
Guía para los Committers
Resumen

Este documento proporciona información para la comunidad de committers de FreeBSD. Todos los
committers nuevos deben leer este documento antes de empezar, y se recomienda
encarecidamente a los committers actuales que lo revisen de vez en cuando.

Casi todos los desarrolladores de FreeBSD tienen derecho de acceso a uno o más repositorios. Sin
embargo, algunos desarrolladores no lo tienen, y cierta información aquí expuesta también les
afecta. (Por ejemplo, algunas personas sólo tienen derecho a trabajar con la base de datos de
reporte de problemas.) Por favor lea Problemas Específicos para Desarrolladores que No Son
Committers para más información.

Este documento también puede ser de interés para los miembros de la comunidad de FreeBSD que
quieran saber más sobre el funcionamiento del proyecto.

Tabla de contenidos
1. Detalles administrativos . 2

2. Claves OpenPGP de FreeBSD . 3

3. Kerberos y contraseña web LDAP para el clúster de FreeBSD . 4

4. Tipos de Commit Bits . 5

5. Introducción a Git. 7

6. Histórico del Control de Versiones. 40

7. Configuración, Convenciones y Tradiciones . 41

8. Revisión previa al commit . 46

9. Mensajes de Commit . 47

10. Licencia preferida para los nuevos archivos . 55

11. Seguimiento de las licencias concedidas al proyecto FreeBSD . 56

12. Etiquetas SPDX en el árbol. 57

13. Relaciones con los desarrolladores . 57

14. Si tienes dudas … . 58

15. Bugzilla . 59

16. Phabricator . 59

17. Quien es Quien . 60

18. Guía de inicio rápido de SSH . 61

19. Disponibilidad de Coverity® para los Committers de FreeBSD . 62

20. La gran lista de reglas de los Committers de FreeBSD . 62

21. Soporte para múltiples arquitecturas . 71

22. Preguntas frecuentes sobre ports específicos . 75

1

1. Detalles administrativos
Métodos de inicio de sesión ssh(1), sólo protocolo 2

Host Shell Principal freefall.FreeBSD.org

Máquinas de Referencia ref*.FreeBSD.org, universe*.freeBSD.org
(consulta también Máquinas del Proyecto
FreeBSD)

SMTP Host smtp.FreeBSD.org:587 (consulta también
Configuración de acceso SMTP).

src/ Repositorio Git ssh://git@gitrepo.FreeBSD.org/src.git

doc/ Repositorio Git ssh://git@gitrepo.FreeBSD.org/doc.git

ports/ Repositorio Git ssh://git@gitrepo.FreeBSD.org/ports.git

Listas de Correo Internas developers (técnicamente llamada all-
developers) doc-developers, doc-committers,
ports-developers, ports-committers, src-
developers, src-committers. (Cada repositorio
del proyecto tiene su propia lista de correo
terminada en -developers y -committers. Se
pueden encontrar archivos para estas listas en
los ficheros /local/mail/repository-name-
developers-archive y /local/mail/repository-
name-committers-archive en
freefall.FreeBSD.org.)

Informes mensuales del Core Team /home/core/public/reports en el clúster
FreeBSD.org.

Informes mensuales del Ports Management Team /home/portmgr/public/monthly-reports en el
clúster FreeBSD.org.

Notablemente Ramas de Git de src/: stable/n (n-STABLE), main (-CURRENT)

Se requiere ssh(1) para conectarse a los servidores del proyecto. Para más información, lea Guía de
inicio rápido de SSH.

Enlaces de interés:

• Páginas Internas del Proyecto FreeBSD

• Servidores del Proyecto FreeBSD

23. Problemas Específicos para Desarrolladores que No Son Committers. 82

24. Información sobre Google Analytics . 82

25. Preguntas misceláneas . 83

26. Beneficios y Ventajas para los committers de FreeBSD . 83

2

https://man.freebsd.org/cgi/man.cgi?query=ssh&sektion=1&format=html
https://www.FreeBSD.org/internal/machines/
https://www.FreeBSD.org/internal/machines/
https://man.freebsd.org/cgi/man.cgi?query=ssh&sektion=1&format=html
https://www.FreeBSD.org/internal/
https://www.FreeBSD.org/internal/machines/

• Grupos Administrativos del Proyecto FreeBSD

2. Claves OpenPGP de FreeBSD
Claves criptográficas que siguen al estándar OpenPGP (Pretty Good Privacy) son utilizadas por el
Proyecto FreeBSD para autentificar a los colaboradores. Mensajes que contengan información
importante como claves SSH públicas pueden ser firmadas con una clave OpenPGP para demostrar
que provienen realmente del colaborador. Véase PGP & GPG: Email for the Practical Paranoid by
Michael Lucas y http://en.wikipedia.org/wiki/Pretty_Good_Privacy para más información.

2.1. Creando una clave
Se pueden utilizar claves ya existentes, pero primero deberían ser comprobadas primero con
documentation/tools/checkkey.sh. En este caso, comprueba que la clave tiene un identificador de
usuario de FreeBSD.

Para aquellos que todavía no tengan una clave OpenPGP, o necesiten una nueva para reunir los
requerimientos de seguridad de FreeBSD, se mostrará a continuación como generarla.

1. Instala security/gnupg. Inserta las siguientes líneas en ~/.gnupg/gpg.conf para establecer
valores aceptables por defecto:

fixed-list-mode
keyid-format 0xlong
personal-digest-preferences SHA512 SHA384 SHA256 SHA224
default-preference-list SHA512 SHA384 SHA256 SHA224 AES256 AES192 AES CAST5
BZIP2 ZLIB ZIP Uncompressed
verify-options show-uid-validity
list-options show-uid-validity
sig-notation issuer-fpr@notations.openpgp.fifthhorseman.net=%g
cert-digest-algo SHA512

2. Genera una clave:

% gpg --full-gen-key
gpg (GnuPG) 2.1.8; Copyright (C) 2015 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Warning: using insecure memory!
Please select what kind of key you want:
 (1) RSA and RSA (default)
 (2) DSA and Elgamal
 (3) DSA (sign only)
 (4) RSA (sign only)
Your selection? 1

3

https://www.FreeBSD.org/administration/
https://nostarch.com/releases/pgp_release.pdf
https://nostarch.com/releases/pgp_release.pdf
http://en.wikipedia.org/wiki/Pretty_Good_Privacy

RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048) 2048 ①
Requested keysize is 2048 bits
Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0) 3y ②
Key expires at Wed Nov 4 17:20:20 2015 MST
Is this correct? (y/N) y
GnuPG needs to construct a user ID to identify your key.

Real name: Chucky Daemon ③
Email address: notreal@example.com
Comment:
You selected this USER-ID:
"Chucky Daemon <notreal@example.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
You need a Passphrase to protect your secret key.

① Claves de 2048 bits con una expiración de tres años proporcionan una protección adecuada
actualmente (202-10).

② Tres años de vida útil para una clave hacen que sea lo suficientemente corta como para
hacer que quede obsoleta por el avance de la potencia de los ordenadores, pero lo
suficientemente larga como para reducir los problemas de administración de claves.

③ Utiliza tu nombre real aquí, preferiblemente coincidente con el nombre de tu documento
de identificación oficial para ayudar a otros a verificar tu identidad. En la sección Comment
se puede introducir texto que ayude a otros a identificarte.
Después de introducir la dirección de correo electrónico, se solicita una contraseña. Los
métodos para crear una contraseña segura son bastante polémicos. En lugar de sugerir una
única forma, aquí hay algunos enlaces a sitios que describen varios métodos:
https://world.std.com/~reinhold/diceware.html, https://www.iusmentis.com/security/
passphrasefaq/, https://xkcd.com/936/, https://en.wikipedia.org/wiki/Passphrase.

Protege la clave privada y la contraseña. Si la clave privada o la contraseña fueran comprometidas
o reveladas, notifícalo de forma inmediata a accounts@FreeBSD.org y revoca la clave.

Los pasos para enviar la nueva clave se muestran en Pasos para los Nuevos Committers.

3. Kerberos y contraseña web LDAP para el
clúster de FreeBSD
El clúster de FreeBSD requiere una contraseña de Kerberos para acceder a ciertos servicios. La

4

https://world.std.com/~reinhold/diceware.html
https://www.iusmentis.com/security/passphrasefaq/
https://www.iusmentis.com/security/passphrasefaq/
https://xkcd.com/936/
https://en.wikipedia.org/wiki/Passphrase
mailto:accounts@FreeBSD.org

contraseña de Kerberos también sirve como contraseña web LDAP, ya que LDAP hace de proxy a
Kerberos en el clúster. Algunos de los servicios que requieren esto incluyen:

• Bugzilla

• Jenkins

Para crear una nueva cuenta de Kerberos en el clúster de FreeBSD, o para restablecer una
contraseña de Kerberos para una cuenta existente utilizando un generador de contraseñas
aleatorias:

% ssh kpasswd.freebsd.org

 Esto debe hacerse desde una máquina fuera del clúster de FreeBSD.org.

Una contraseña de Kerberos también puede ser establecida manualmente iniciando sesión en
freefall.FreeBSD.org y ejecutando:

% kpasswd



A menos que los servicios autentificados con Kerberos del clúster de FreeBSD.org
hayan sido usados previamente, se mostrará Client unknown. Este error significa
que el método de ssh kpasswd.freebsd.org mostrado previamente tendrá que ser
usado para inicializar la cuenta de Kerberos.

4. Tipos de Commit Bits
El repositorio de FreeBSD tiene una serie de componentes que, cuando se combinan, integran el
código fuente del sistema base del sistema operativo, la documentación, la infraestructura de ports
de las aplicaciones de terceros y varias utilidades mantenidas. Cuando se asignan los commit bits,
se especifican las áreas del árbol donde se tiene permiso. Generalmente, las áreas asociadas con un
commit bit reflejan quién autorizó la asignación del commit bit. Se pueden agregar más áreas de
autoridad posteriormente: cuando esto ocurre, el committer debe seguir los procedimientos
normales de asignación de commit bit para esa área del árbol, buscar la aprobación de la entidad
apropiada y posiblemente obtener un mentor para esa área durante un cierto periodo de tiempo.

Tipos de Commiters Responsable Componentes del Árbol

src core@ src/

doc doceng@ doc/, ports/, src/ documentación

ports portmgr@ ports/

Los commit bits asignados antes de que se desarrollara la idea de áreas de autoridad, pueden ser
apropiados para su uso en muchas partes del árbol. Sin embargo, el sentido común dicta que un
committer que no haya trabajado previamente en esa área del árbol busque una revisión antes de
realizar el commit, busque la aprobación del equipo responsable, y/o trabaje con un mentor. Dado

5

https://bugs.freebsd.org/bugzilla
https://ci.freebsd.org

que las reglas con respecto al mantenimiento del código difieren según el área del árbol, esto
beneficiará tanto a quién trabaja en un área del árbol con la que no está muy familiarizado como a
quienes trabajan en el árbol.

Se anima a los committers a buscar la revisión de su trabajo como parte del proceso natural del
desarrollo, independientemente del área del árbol en la cual se esté realizando el trabajo.

4.1. Política para la actividad de los Committers en
otros árboles

• Todos los committers pueden modificar src/share/misc/committers-*.dot,
src/usr.bin/calendar/calendars/calendar.freebsd, y ports/astro/xearth/files.

• Los committers de documentación pueden realizar commits en la documentación de src, como
las páginas del manual, READMEs, bases de datos de fortune, archivos de calendario y
correcciones de comentarios sin la aprobación de un src committer, teniendo en cuenta las
normas requeridas para la correcta realización de los commits.

• Cualquier committer puede realizar cambios en cualquier otro árbol con un "Approved by" de
un committer que no esté tutelado y dispone del commit bit apropiado. Los committers con
mentor pueden proporcionar un comentario "Reviewed by" pero no un "Approved by".

• Los committers pueden adquirir commit bit adicionales mediante el proceso habitual de
encontrar a un mentor que lo proponga a core, doceng o portmgr, según sea el caso. Una vez
aprobados, se añadirán al "acceso" y se producirá el periodo normal de tutoría, que implicará
una continuación de "Approved by" durante algún tiempo.

4.1.1. Aprobación Implícita (Blanket) de Documentación

Algunos arreglos tienen "blanket approval" por parte de Grupo de Ingeniería de Documentación
<doceng@FreeBSD.org>, permitiendo a cualquier committer arreglar ese tipo de problemas en
cualquier parte del árbol de documentación. Estos arreglos no necesitan aprobación o revisión por
parte de un committer de documentación si el autor no tiene un commit bit de documentación.

El blanket approval aplica en estos tipos de arreglos:

• Faltas de ortografía

• Arreglos triviales

Puntuación, URLs, fechas, rutas y nombres de fichero con información desactualizada o
incorrecta, y otros errores comunes que puedan confundir a los lectores.

A lo largo de los años, se han concedido algunas aprobaciones implícitas en el árbol de
documentación. Esta lista muestra los casos más comunes:

• Cambios en documentation/content/en/books/porters-handbook/versions/_index.adoc

__FreeBSD_version Values (Porter’s Handbook), utilizado principalmente por committers de src.

• Cambios en doc/shared/contrib-additional.adoc

6

mailto:doceng@FreeBSD.org
https://docs.freebsd.org/en/books/porters-handbook/versions/

Mantenimiento de Colaboradores Adicionales de FreeBSD.

• Todo Pasos para los Nuevos Committers, relacionado con documentación

• Avisos de seguridad; Notas de Errata; Releases;

Utilizado por Grupo Responsables de Seguridad <security-officer@FreeBSD.org> y Grupo de
Ingeniería de Releases <re@FreeBSD.org>.

• Cambios en website/content/en/donations/donors.adoc

Utilizado por el Responsable de Donaciones <donations@FreeBSD.org>.

Antes de un commit, es necesario comprobar la compilación; consulta las secciones de 'Overview' y
'The FreeBSD Documentation Build Process' de Introducción al Proyecto de Documentación de
FreeBSD para Nuevos Voluntarios para más detalles.

5. Introducción a Git

5.1. Git básico
Cuando uno busca "Introducción a Git" aparecen unos cuantos buenos las introducciones de Daniel
Miessler A git primer y de Willie Willus Git - Quick Primer son ambas buenas. El libro de Git
también es completo, pero mucho más largo https://git-scm.com/book/en/v2. También hay un sitio
web https://dangitgit.com/ para errores comunes y problemas de Git, en caso de que necesites
ayuda para arreglar algo. Por último una introducción dirigida a científicos computacionales ha
demostrado ser útil para algunos a la hora de explicar cómo Git ve el mundo.

Este documento asumirá que lo has leído y tratará de no insistir en lo básico (aunque lo cubrirá
brevemente).

5.2. Mini Introducción a Git
Esta introducción tiene un ámbito menos ambicioso que la antigua Introducción a Subversion, pero
debería cubrir lo básico.

5.2.1. Ámbito

Si quieres descargar FreeBSD, compilarlo desde las fuentes, y en general mantenerte actualizado de
ese modo, esta introducción es para ti. Cubre cómo obtener las fuentes, actualizarlas, hacer
bisección y trata brevemente cómo lidiar con unos pocos cambios locales. Cubre lo básico y trata de
dar buenos consejos para un tratamiento más en profundidad para cuando el lector encuentre lo
básico insuficiente. Otras secciones de esta guía cubren temas más avanzados relacionados con
cómo contribuir al proyecto.

El objetivo de esta sección es resaltar aquellas partes de Git que se necesitan para seguir la pista a
las fuentes. Asumen un conocimiento básico de Git. Hay muchas introducciones de Git en la web,
pero el Git Book proporciona una de las mejores.

7

https://docs.freebsd.org/en/articles/contributors/#contrib-additional
#commit-steps
mailto:security-officer@FreeBSD.org
mailto:re@FreeBSD.org
mailto:donations@FreeBSD.org
https://docs.freebsd.org/en/books/fdp-primer/
https://docs.freebsd.org/en/books/fdp-primer/
https://danielmiessler.com/study/git/
https://gist.github.com/williewillus/068e9a8543de3a7ef80adb2938657b6b
https://git-scm.com/book/en/v2
https://dangitgit.com/
https://eagain.net/articles/git-for-computer-scientists/
https://git-scm.com/book/en/v2

5.2.2. Primeros Pasos Para Desarrolladores

Esta sección describe el acceso de lectura-escritura para que los committers hagan push de los
commits de los desarrolladores o colaboradores.

5.2.2.1. Uso diario


In the examples below, replace ${repo} with the name of the desired FreeBSD
repository: doc, ports, or src.

• Clona el repositorio:

% git clone -o freebsd --config remote.freebsd.fetch='+refs/notes/*:refs/notes/*'
https://git.freebsd.org/${repo}.git

Después deberías tener tu remote apuntando a los mirrors oficiales:

% git remote -v
freebsd https://git.freebsd.org/${repo}.git (fetch)
freebsd https://git.freebsd.org/${repo}.git (push)

• Configura los datos del committer de FreeBSD:

El commit hook en repo.freebsd.org comprueba que el campo "Commit" coincide con la
información del committer en FreeBSD.org. La forma más fácil de conseguir la configuración
sugerida es ejecutar el script /usr/local/bin/gen-gitconfig.sh en freefall:

% gen-gitconfig.sh
[...]
% git config user.name (your name in gecos)
% git config user.email (your login)@FreeBSD.org

• Establece la URL para hacer push:

% git remote set-url --push freebsd git@gitrepo.freebsd.org:${repo}.git

Después deberías tener URLs separadas para fetch y push que es la configuración más eficiente:

% git remote -v
freebsd https://git.freebsd.org/${repo}.git (fetch)
freebsd git@gitrepo.freebsd.org:${repo}.git (push)

De nuevo, date cuenta de que gitrepo.freebsd.org ha sido convertido a su forma canónica
repo.freebsd.org.

8

• Instala el hook para la plantilla del mensaje de commit:

% fetch https://cgit.freebsd.org/src/plain/tools/tools/git/hooks/prepare-commit-msg
-o .git/hooks
% chmod 755 .git/hooks/prepare-commit-msg

5.2.2.2. rama "admin"

Los ficheros access y metors se almacenan en una rama huérfana, internal/admin, en cada
repositorio.

El siguiente ejemplo muestra cómo obtener la rama internal/admin en una rama local admin:

% git config --add remote.freebsd.fetch '+refs/internal/*:refs/internal/*'
% git fetch
% git checkout -b admin internal/admin

De forma alternativa, puedes añadir un árbol de trabajo (worktree) para la rama admin:

git worktree add -b admin ../${repo}-admin internal/admin

Para visualizar la rama internal/admin en la web: https://cgit.freebsd.org/${repo}/log/?
h=internal/admin

For pushing, specify the full refspec:

git push freebsd HEAD:refs/internal/admin

5.2.3. Mantenerse Actualizado Con el Árbol src de FreeBSD

Primer paso: clonar un árbol. Esto descarga el árbol completo. Hay dos formas de hacerlo. La
mayoría de la gente quiere hacer un clonado profundo del repositorio. Sin embargo, hay momentos
en los que quieres hacer un clonado superficial.

5.2.3.1. Nombres de las Ramas

FreeBSD-CURRENT utiliza la rama main.

main es la rama por defecto.

Para FreeBSD-STABLE, los nombres de las ramas incluyen stable/12 y stable/13.

Para FreeBSD-RELEASE, los nombres de las ramas de ingeniería de versiones incluyen releng/12.4
y releng/13.2.

https://www.freebsd.org/releng/ muestra:

9

https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://cgit.freebsd.org/${repo}/log/?h=internal/admin
https://www.freebsd.org/releng/

• ramas main y stable/⋯ abiertas

• ramas releng/⋯ , cada una de las cuales es congelada cuando se etiqueta una versión.

Ejemplos:

• etiqueta release/13.1.0 en la rama releng/13.1

• etiqueta release/13.2.0 en la rama releng/13.2.

5.2.3.2. Repositorios

Por favor consulta Detalles Administrativos para la última información sobre dónde obtener las
fuentes de FreeBSD. El $URL que se muestra abajo se puede obtener en esa página.

Nota: El proyecto no utiliza submódulos ya que no encajan en nuestro flujo de trabajo y modelo de
desarrollo. Cómo seguimos la pista a los cambios en las aplicaciones de terceros se discute en otro
sitio y en general no es de interés para un usuario casual.

5.2.3.3. Clonado Profundo

Un clonado profundo se trae el árbol entero, así como las ramas y toda la historia. Es lo más fácil de
hacer. También te permite usar la característica de los árboles de trabajo para tener todas tus
ramas activas en directorios separados pero con una sola copia del repositorio.

% git clone -o freebsd $URL -b branch [<directory>]

 — creará un clonado profundo. branch debería ser una de las ramas listadas en la sección anterior.
Si no se proporciona branch se usará la rama por defecto (main). Si no se proporciona <directory> se
usará como nombre del nuevo directorio el que coincida con el nombre del repositorio (doc, ports o
src).

Querrás un clonado profundo si estás interesado en el histórico, planeas hacer cambios locales, o
planeas trabajar en más de una rama. Es la forma más fácil también de mantenerse actualizado. Si
estás interesado en el histórico pero vas a trabajar sólo con una rama y andas corto de espacio,
también puedes usar --single-branch para descargar la rama (aunque algunos commits de merge no
referenciarán la rama desde la que se mergearon lo que podría ser importante para algunos
usuarios interesados en versiones detalladas del histórico).

5.2.3.4. Clonado Superficial

Un clonado superficial sólo copia el código más actual, pero nada o poco del histórico. Esto puede
ser útil cuando necesitas construir una revisión específica de FreeBSD o cuando simplemente estás
empezando y planeas seguir la pista al árbol de forma más completa. También puedes usarlo para
limitar el histórico a un número determinado de revisiones. Sin embargo, lee más abajo para una
limitación importante a esta aproximación.

% git clone -o freebsd -b branch --depth 1 $URL [dir]

10

https://cgit.freebsd.org/src/tag/?h=release/13.1.0
https://cgit.freebsd.org/src/log/?h=releng/13.1
https://cgit.freebsd.org/src/tag/?h=release/13.2.0
https://cgit.freebsd.org/src/log/?h=releng/13.2

Esto clona el repositorio, pero sólo la versión más reciente. El resto del histórico no se descarga. Si
cambiaras de opinión más tarde, puedes hacer git fetch --unshallow para obtener el histórico
antiguo.


Cuando haces un clonado superficial, pierdes el contador de commits en la salida
de uname. Esto puede hacer más difícil determinar si tu sistema necesita ser
actualizado cuando se notifica un aviso de seguridad.

5.2.3.5. Compilando

Una vez que has descargado, la compilación se hace como se describe en el manual, por ejemplo.:

% cd src
% make buildworld
% make buildkernel
% make installkernel
% make installworld

de forma que no lo cubriremos en profundidad.

Si quieres construir un kernel personalizado, la sección de configuración del kernel del FreeBSD
Handbook recomienda crear un fichero MYKERNEL bajo sys/${ARCH}/conf con tus cambios contra
GENERIC. Para que Git ignore MYKERNEL, se puede añadir a .git/info/exclude.

5.2.3.6. Actualización

Para actualizar ambos tipos de árbol utilizan los mismos comandos. Esto se trae todas las revisiones
desde tu última actualización.

% git pull --ff-only

actualizará el árbol. En Git, un merge tipo 'fast forward' es aquel que sólo necesita establecer el
puntero a una rama nueva y no necesita recrear los commits. Haciendo siempre un merge/pull de
tipo 'fast forward', te asegurarás de que tienes una copia exacta del árbol de FreeBSD. Esto será
importante si quieres mantener parches locales.

Lee más abajo para saber cómo gestionar cambios locales. Lo más sencillo es utilizar --autostash
con el comando git pull, pero hay disponibles opciones más sofisticadas.

5.2.4. Seleccionando una Versión Específica

En Git, git checkout se trae tanto ramas como versiones específicas. Las versiones de Git son hashes
largos en lugar de números secuenciales.

Cuando te traes una versión específica, simplemente especifica en la línea de comando el hash que
quieres (el comando git log te ayudará a decidir cuál es el hash que quieres):

11

https://docs.freebsd.org/es/books/handbook/#kernelconfig

% git checkout 08b8197a74

y ya te lo has traído. Se te saludará con un mensaje como el siguiente:

Note: checking out '08b8197a742a96964d2924391bf9fdfeb788865d'.

You are in a 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

 git checkout -b <new-branch-name>

HEAD is now at 08b8197a742a hook gpiokeys.4 to the build

donde la última línea es generada a partir del hash que te has traído y la primera línea del mensaje
de commit de esa revisión. El hash se puede abreviar a la longitud única más corta que exista. Git es
inconsistente acerca de cuántos dígitos muestra.

5.2.5. Bisección

A veces, algo va mal. La última versión funcionó pero la última a la que te has actualizado no. Un
desarrollador podría pedirte que bisecciones el problema para localizar qué commit causó la
regresión.

Git hacer fácil biseccionar cambios con un potente comando git bisect. Aquí hay una breve
introducción a cómo usarlo. Para más información, puedes ver https://www.metaltoad.com/blog/
beginners-guide-git-bisect-process-elimination o https://git-scm.com/docs/git-bisect para más
detalles. La página de manual de git-bisect es buena describiendo lo que puede salir mal, qué hacer
cuando las versiones no compilan, cuándo quieres usar otros términos diferentes de 'bueno' y
'malo', etc, nada de lo cual se cubrirá aquí.

git bisect start --first-parent comenzará el proceso de bisección. Después necesitarás decirle un
rango para que trabaje. git bisect good XXXXXX le dirá la revisión que funciona y git bisect bad
XXXXX le dirá la revisión mala. La revisión mala casi siempre será HEAD (un tag especial para lo que
te has traído). La versión buena será la última que te trajiste. El argumento --first-parent es
necesario para que llamadas siguientes a git bisect no intenten traerse una rama externa que
carece de las fuentes completas de FreeBSD.



Si quieres saber la última versión que te trajiste, deberías usar git reflog:

5ef0bd68b515 (HEAD -> main, freebsd/main, freebsd/HEAD) HEAD@{0}: pull
--ff-only: Fast-forward
a8163e165c5b (upstream/main) HEAD@{1}: checkout: moving from
b6fb97efb682994f59b21fe4efb3fcfc0e5b9eeb to main

12

https://www.metaltoad.com/blog/beginners-guide-git-bisect-process-elimination
https://www.metaltoad.com/blog/beginners-guide-git-bisect-process-elimination
https://git-scm.com/docs/git-bisect

...

me muestra moviendo el directorio de trabajo a la rama main (a816…) y después
actualizando desde el origen (a 5ef0…). En esta caso, malo sería HEAD (o 5rf0bd68)
y bueno sería a8163e165. Como puedes ver en la salida, HEAD@{1} también
funciona, pero no es a prueba de fallos si has hecho otras cosas en tu árbol después
de actualizar, pero antes de que descubrieras que tenías que hacer bisección.

Primero establece la versión 'good', luego la mala (aunque el orden no importa). Cuando
establezcas la versión mala, te dará algunas estadísticas sobre el proceso:

% git bisect start --first-parent
% git bisect good a8163e165c5b
% git bisect bad HEAD
Bisecting: 1722 revisions left to test after this (roughly 11 steps)
[c427b3158fd8225f6afc09e7e6f62326f9e4de7e] Fixup r361997 by balancing parens. Duh.

Después deberías compilar/instalar esa versión. Si es buena, teclearías git bisect good si no git
bisect bad. Si la versión no compila, teclea git bisect skip. Recibirás un mensaje similar al de
arriba para cada paso. Una vez que hayas terminado, informa al desarrollador de la versión mala
(o arregla el fallo tú mismo y envía un parche). git bisect reset terminará el proceso y te
devolverá a donde empezaste (normalmente a la punta de main). De nuevo, el manual de git-bisect
(enlazado arriba) es un buen recurso para cuando las cosas van mal o en casos inusuales.

5.2.6. Firmando los commits, tags, y pushes, con GnuPG

Git sabe cómo firmar commits, tags y pushes. Cuando firmas un commit o tag de Git, puedes probar
que el código que enviaste vino de ti y que no fue alterado mientras lo transferías. También puedes
probar que tú enviaste el código y no otra persona.

Se puede encontrar documentación más en profundidad sobre cómo firmar commits y tags en el
capítulo Git Tools - Signing Your Work del libro de Git.

El motivo tras la firma de pushes se puede encontrar en el commit que introdujo esta característica.

La mejor forma es simplemente decirle a Git que siempre quieres firmar commits, tags y pushes.
Puedes hacerlo estableciendo unas pocas variables de configuración:

% git config --add user.signingKey LONG-KEY-ID
% git config --add commit.gpgSign true
% git config --add tag.gpgSign true
% git config --add push.gpgSign if-asked


Para evitar posibles colisiones, asegúrate de darle a Git una id de clave que sea
largo. Puedes obtenerlo con: gpg --list-secret-keys --keyid-format LONG.

13

https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work
https://github.com/git/git/commit/a85b377d0419a9dfaca8af2320cc33b051cbed04


Para utilizar subclaves específicas y no hacer que GnuPG resuelva la subclave a
una clave primaria, añade ! a la clave. Por ejemplo, para encriptar la subclave
DEADBEEF, usa DEADBEEF!.

5.2.6.1. Verificando firmas

Las firmas de los commits se pueden verificar ejecutando git verify-commit <commit hash>, o git
log --show-signature.

Las firmas de los tags se pueden verificar con git verity-tag <tag name>, o git tag -v <tag name>.

5.2.7. Consideraciones para Ports

El árbol de ports funciona de la misma forma. Los nombres de las ramas son diferentes y los
repositorios están en diferentes lugares.

La interfaz web cgit del repositorio para ser usada desde navegadores web está en
https://cgit.FreeBSD.org/ports/. El repositorio Git de producción está en https://git.FreeBSD.org/
ports.git y en ssh://anongit@git.FreeBSD.org/ports.git (o anongit@git.FreeBSD.org:ports.git).

También hay un mirror en GitHub, lee Mirrors externos para un resumen. La rama más actual es
'main'. Las ramas trimestrales se llaman yyyyQn para el año 'yyyy' y el trimestre 'n'.

5.2.7.1. Formatos de mensaje de commits

El repositorio de ports tiene disponible en .hooks/prepare-commit-message un hook para ayudarte
a escribir tus mensajes de commit. Se puede activar ejecutando git config --add core.hooksPath
.hooks.

La razón principal es que un mensaje de commit se debería formatear de la siguiente forma:

category/port: Summary.

Descripción de por qué se han hecho los cambios.

PR: 12345



La primera línea es el título del commit, contiene por qué el port ha cambiado, y
un resumen del commit. Debería ser de no más de 50 caracteres.

Se debería utilizar una línea en blanco para separarlo del resto del mensaje de
commit.

El resto del mensaje se debería limitar a no más de 72 caracteres por línea.

Si hay campos de metadatos se debería utilizar otra línea en blanco, de forma que
se distingan fácilmente del mensaje de commit.

14

https://cgit.FreeBSD.org/ports/
https://git.FreeBSD.org/ports.git
https://git.FreeBSD.org/ports.git
mailto:anongit@git.FreeBSD.org
https://docs.freebsd.org/es/books/handbook//mirrors#mirrors
https://cgit.freebsd.org/ports/tree/.hooks/prepare-commit-msg

5.2.8. Gestionando Cambios Locales

This section addresses tracking local changes. If you have no local changes you can skip this section.

Un punto que es importante para todos ellos: todos los cambios son locales hasta que se hace push.
A diferencia de Subversion, Git utiliza un modelo distribuido. Para la mayoría de los usuarios y los
casos, hay poca diferencia. Sin embargo, si tienes cambios locales, puedes usar la misma
herramienta para gestionarlos que la que usara para traerte los cambios de FreeBSD. Todos los
cambios para los que no has hecho push son locales y se pueden cambiar fácilmente (git rebase,
discutido más abajo hace esto).

5.2.8.1. Manteniendo cambios locales

La forma más sencilla de mantener cambios locales (especialmente si son triviales) es usar git
stash. En su forma más simple, utilizas git stash para grabar los cambios (lo que los empuja a la
pila del stash). La mayoría de la gente utiliza esto para guardar cambios antes de actualizar un
árbol como se describe arriba. Después utilizan git stash apply para reaplicarlos al árbol. El stash
es una pila de cambios que se puede examinar con git stash list. La página del manual de git-
stash (https://git-scm.com/docs/git-stash) tiene todos los detalles.

Este método va bien cuando tienes pequeños cambios en el árbol. Cuando tienes algo no trivial,
probablemente sea mejor mantener una rama local y rebasarla. Guardar los cambios (stashing)
también es algo integrado en el comando git pull: simplemente añade --autostash en la línea de
comando.

5.2.8.2. Manteniendo una rama local

Es mucho más fácil mantener una rama local con Git que con Subversion. En Subversion necesitas
mergear el commit, y resolver los conflictos. Esto es manejable, pero puede llevar a un histórico
complicado que es difícil de mover al origen (upstream) si fuera necesario, o difícil de replicar si lo
necesitas. Git también permite mergear, con los mismos problemas. Esa es una forma de gestionar
la rama, pero es la menos flexible.

Además de hacer merging, Git soporta el concepto de rebase que evita estos problemas. El comando
git rebase rehace todos los commits de una rama en un lugar nuevo de la rama padre. Cubriremos
los casos más comunes que surgen al usarlo.

5.2.8.2.1. Crear una rama

Digamos que quieres hacer un cambio en el comando ls de FreeBSD para que nunca use colores.
Hay muchas razones para hacer esto, pero en este ejemplo usaremos esto como punto de partida. El
comando ls de FreeBSD cambia de cuándo en cuándo y necesitarás lidiar con esos cambios.
Afortunadamente, con Git rebase esto es algo normalmente automático.

% cd src
% git checkout main
% git checkout -b no-color-ls
% cd bin/ls
% vi ls.c # hack the changes in
% git diff # check the changes

15

https://git-scm.com/docs/git-stash

diff --git a/bin/ls/ls.c b/bin/ls/ls.c
index 7378268867ef..cfc3f4342531 100644
--- a/bin/ls/ls.c
+++ b/bin/ls/ls.c
@@ -66,6 +66,7 @@ __FBSDID("$FreeBSD$");
 #include <stdlib.h>
 #include <string.h>
 #include <unistd.h>
+#undef COLORLS
 #ifdef COLORLS
 #include <termcap.h>
 #include <signal.h>
% # these look good, make the commit...
% git commit ls.c

El commit te llevará a un editor para que describas lo que has hecho. Una vez hecho esto, tienes tu
propia rama local en el repo de Git. Compila e instala como harías normalmente, siguiendo las
instrucciones del manual. Git es diferente a otros sistemas de control de versiones en cuanto que
tienes que decirle explícitamente qué ficheros quieres incluir en el commit. He optado por hacerlo
en la linea de comando pero también puedes hacerlo con git add que se cubre en muchos de los
tutoriales más detallados.

5.2.8.2.2. Momento de actualizar

Cuando es momento de sacar una nueva versión, es casi lo mismo que sin ramas. Actualizarías
como se ha hecho arriba, pero hay un comando extra antes de que actualices y uno después. Lo que
sigue asume que empiezas con un árbol sin modificar. Es importante empezar las operaciones de
rebase con un árbol limpio (es un requisito en Git).

% git checkout main
% git pull --ff-only
% git rebase -i main no-color-ls

Eso arrancará un editor que lista todos los commits. Para este ejemplo, no lo cambies. Esto es
típicamente lo que haces mientras actualizas la base (aunque también puedes utilizar el comando
rebase de Git para filtrar los commits que quieres en la rama).

Una vez que has terminado con lo de arriba, tienes que avanzar los commits de ls.c desde la versión
vieja de FreeBSD a la nueva.

A veces hay conflictos al fusionar. Está bien. No te asustes. En lugar de eso, trátalos como cualquier
otro conflicto de merge. Para hacerlo sencillo, simplemente describiré un problema común que
puede aparecer. Se puede encontrar un enlace a un tratamiento más completo al final de esta
sección.

Digamos que los includes cambian en el proyecto origen de una forma radical para terminfo así
como también un cambio de nombre para la opción. Cuando te actualizaste, podrías haber visto
algo como esto:

16

Auto-merging bin/ls/ls.c
CONFLICT (content): Merge conflict in bin/ls/ls.c
error: could not apply 646e0f9cda11... no color ls
Resolve all conflicts manually, mark them as resolved with
"git add/rm <conflicted_files>", then run "git rebase --continue".
You can instead skip this commit: run "git rebase --skip".
To abort and get back to the state before "git rebase", run "git rebase --abort".
Could not apply 646e0f9cda11... no color ls

que da miedo. Si abres un editor, verás que es una resolución de conflicto típica de 3 vías con la que
podrías estar familiarizado de otros sistemas de control de código (el resto de ls.c se ha omitido):

 <<<<<<< HEAD
 #ifdef COLORLS_NEW
 #include <terminfo.h>
 =======
 #undef COLORLS
 #ifdef COLORLS
 #include <termcap.h>
 >>>>>>> 646e0f9cda11... no color ls
....
El código nuevo está primero, y tu código segundo.
El arreglo correcto aquí es añadir simplemente #undef COLORLS_NEW ante de @ifdef y
después borrar los cambios antiguos:
[source,shell]
....
#undef COLORLS_NEW #ifdef COLORLS_NEW #include <terminfo.h>
....
guarda el fichero.
El rebase fue interrumpido, así que tienes que completarlo:
[source,shell]
....
% git add ls.c % git rebase --continue
....

que le dice a Git que ls.c ha sido arreglado y que puede continuar con el rebase. Puesto que hubo un
conflicto, se te dirigirá al editor para actualizar el mensaje de commit si es necesario. Si el mensaje
sigue siendo preciso, simplemente sal del editor.

Si te atascas durante el rebase, no te asustes. git rebase --abort te llevará de nuevo a un estado
limpio. Sin embargo, es importante empezar con un árbol sin modificar. Una nota: el git reflog
mencionado arriba es útil aquí ya que tendrá una lista de todos los commits (intermedios) que
puedes ver, inspeccionar o seleccionar con cherry-pick.

Para saber más sobre esto, https://www.freecodecamp.org/news/the-ultimate-guide-to-git-merge-
and-git-rebase/ proporciona un tratamiento bastante amplio. Es un buen recursos para problemas
que puedan surgir de forma ocasional pero que son muy oscuros para esta guía.

17

https://www.freecodecamp.org/news/the-ultimate-guide-to-git-merge-and-git-rebase/
https://www.freecodecamp.org/news/the-ultimate-guide-to-git-merge-and-git-rebase/

5.2.8.3. Cambiando a una Rama Diferente de FreeBSD

Si quieres cambiar de stable/12 a la rama current. Si tienes un clonado profundo, lo siguiente es
suficiente: [source,shell]

% git checkout main % # build and install here...

Sin embargo, si tienes una rama local, hay algún problema. Primero, rebase sobreescribirá el
histórico de forma que querrás hacer algo para salvarlo. Segundo, saltar entre ramas suele causar
más conflictos. Si imaginamos que el ejemplo anterior era relativo a stable/12, entonces para
moverlo a main, sugeriría lo siguiente:

% git checkout no-color-ls
% git checkout -b no-color-ls-stable-12 # create another name for this branch
% git rebase -i stable/12 no-color-ls --onto main

Lo anterior se trae no-color-ls. Luego le da un nombre nuevo (no-color-ls-stable-12) en caso de que
necesites volver a ella. Después rebase sobre la rama main. Esto encontrará todos los commits de la
rama no-color-ls actual (hacia atrás hasta donde se encuentra con la rama stable/12) y después los
aplicará de nuevo sobre la rama main creando una nueva rama no-color-ls allí (para lo cual te hice
crear un nombre tipo place holder).

5.3. Procedimientos MFC (Merge From Current)

5.3.1. Resumen

El flujo de trabajo de MFC se puede resumir como git cherry-pick -x más git commit --amend para
ajustar el mensaje de commit. Para múltiples commits, usa git rebase -i para refundirlos juntos y
editar el mensaje de commit.

5.3.2. MFC de un sólo commit

% git checkout stable/X % git cherry-pick -x $HASH --edit

Para commits MFC, por ejemplo una importación externa, necesitarías especificar un padre para
cherry-pick. Normalmente, sería el "primer padre" de la rama de la que estás haciendo cherry-pick,
así que:

% git checkout stable/X % git cherry-pick -x $HASH -m 1 --edit

Si algo va mal, necesitarás abortar el cherry-pick con git cherry-pick --abort o arreglarlo y hacer
un git cherry-pick --continue.

Una vez terminado el cherry-pick, empuja con git push. Si recibes un error por haber perdido una

18

carrera por el commit, utiliza git pull --rebase y prueba a empujarlo de nuevo.

5.3.3. MFC a una rama RELENG

Se necesita más cuidado para hacer MFCs a ramas para las cuales se necesita aprobación. El
proceso es el mismo tanto para un merge típico como para un commit directo excepcional.

• Integra o hace commit directamente a la rama stable/X apropiada antes de integrarlo en la
rama releng/X.Y.

• Utiliza el hash que está en la rama stable/X para el MFC a la rama releng/X.Y.

• Deja ambas líneas "cherry picked from" en el mensaje de commit.

• Asegúrate de añadir la línea Approved by: cuando estés en el editor.

% git checkout releng/13.0 % git cherry-pick -x $HASH --edit

Si se te olvida añadir la línea Approved by:, puedes hacer un git commit --amend para editar el
mensaje de commit antes de empujar los cambios.

5.3.4. MFC de varios commits

% git checkout -b tmp-branch stable/X % for h in $HASH_LIST; do git cherry-pick -x $h;
done % git rebase -i stable/X # mark each of the commits after the first as 'squash' #
Actualiza el mensaje de commit para reflejar todos los cambios del mismo, si fuera
necesario. # Asegúrate de mantener las líneas "cherry picked from". % git push freebsd
HEAD:stable/X

Si el push falla por perder la carrera del commit, haz rebase y prueba de nuevo:

% git checkout stable/X % git pull % git checkout tmp-branch % git rebase stable/X %
git push freebsd HEAD:stable/X

Una vez que el MFC se ha completado, puedes borrar la rama temporal:

% git checkout stable/X % git branch -d tmp-branch

5.3.5. Haciendo MFC de una importación externa

Las importaciones externas son lo único en el árbol que crean un commit tipo merge en la rama
main. Seleccionar commits tipo merge en stable/XX representa una dificultad adicional porque hay
dos padres para un commit tipo merge. En general, querrás la diferencia del primer padre ya que
es la diferencia con main (aunque podría haber algunas excepciones).

19

% git cherry-pick -x -m 1 $HASH

es normalmente lo que quieres. Esto le dirá a cherry-pick que aplique el diff correcto.

Hay algunos pocos casos (con suerte) donde es posible que la rama main haya sido mergeada hacia
atrás por el script de conversión. Si ese fuera el caso (y todavía no hemos encontrado ninguno),
cambiarías lo de arriba por '-m 2' para escoger el padre adecuado. Simplemente haz:

% git cherry-pick --abort % git cherry-pick -x -m 2 $HASH

para hacerlo. El --abort limpiará el primer intento fallido.

5.3.6. Rehaciendo un MFC

Si haces un MFC y va terriblemente mal y quieres empezar de nuevo, lo más fácil es usar git reset
--hard así: [source,shell]

% git reset --hard freebsd/stable/12

aunque si tienes algunas revisiones que quieres mantener, y otras que no,es mejor usar git rebase
-i.

5.3.7. Consideraciones cuando se hace un MFC

Cuando se hace commit the commits the código fuente a las ramas stable y releng, tenemos los
siguientes objetivos:

• Señala claramente los commits directos de aquellos que introducen un cambio desde otra rama.

• Evita introducir errores en las ramas stable y releng.

• Permite a los desarrolladores determinar qué cambias han sido o no traídos desde otra rama.

Con Subversion, usábamos las siguientes prácticas para conseguir estos objetivos:

• Usar las etiquetas MFC y MFS para marcar los commits que integran cambios desde otra rama.

• Compactar los commits de correcciones en el commit principal cuando se integra un cambio.

• Grabar mergeinfo de forma que svn mergeinfo --show-revs funcionara.

Con Git, necesitaremos usar diferentes estrategias para conseguir los mismos objetivos. Este
documento trata de definir las mejores prácticas para conseguir estos objetivos con Git cuando se
mergean cambios de código fuente. En general, tratamos de usar el soporte nativo de Git para
conseguir los objetivos en lugar de forzar a realizar las prácticas construidas sobre el modelo de
Subversion.

Una nota general: debido a las diferencias técnicas con Git, no utilizaremos los "merge commits" de
Git (creados mediante git merge) en las ramas stable o releng. En su lugar, cuando este documento

20

habla de "merge commits", significa el commit original hecho en main que es replicado o
"aterrizado" (landed) en una rama stable, o un commit de una rama stable que es replicado a una
rama releng con alguna variación de git cherry-pick.

5.3.8. Encontrando Hashes Seleccionables para MFC

Git proporciona algo de soporte para esto mediante los comandos git cherry y git log --cherry.
Estos comandos comparan los diffs en crudo de los commits (pero no otros metadatos como los
mensajes de log) para determinar si dos commits son idénticos. Esto funciona bien cuando cada
commit de main se lleva como un sólo commit a la rama stable, pero falla si múltiples commits de
main se compactan juntos como un sólo commit en la rama stable. El proyecto utiliza mucho git
cherry-pick -x preservando todas las líneas para evitar estas dificultades y funciona con
herramientas automatizadas.

5.3.9. Estándares para los mensajes de commit

5.3.9.1. Marcar MFCs

El proyecto ha adoptado las siguientes prácticas para marcar MFCs:

• Usa el flag -x con git cherry-pick. Esto añade una línea al mensaje de commit que incluye el
hash del commit original cuando se hace el merge. Puesto que Git lo añade directamente, los
committers no tienen que editar manualmente el log cuando hacen el merge.

Cuando se mergean varios commits, mantén todas las líneas "cherry picked from".

5.3.9.2. ¿Recortar Metadatos?

Un área que no estaba documentada de forma clara con Subversion (ni con CVS) era cómo
formatear los metadatos en los mensajes de log para los commits tipo MFC. ¿Debería incluir los
metadatos del commit original sin modificar o se debería modificar para reflejar la información
acerca del propio commit MFC?

Históricamente la práctica ha variado, aunque parte de la variación es por campo. Por ejemplo,
MFCs relativos a un PR normalmente incluyen el campo PR en el MFC de forma que los commits
MFC se incluyen en el log de autoría del sistema de reportes de error (bug tracker). Con otros
campos está menos claro. Por ejemplo, Phabricator muestra la diferencia entre el último commit
etiquetado a una revisión, de forma que incluir URLs de Phabricator reemplaza el commit principal
con los commits "aterrizados". La lista de revisores tampoco está clara. Si un revisor ha aprobado
un cambio a main, ¿significa eso que han aprobado el commit MFC? ¿Es cierto si el código es
idéntico o con sólo cambios triviales? Claramente no es cierto para trabajos más extensivos. Incluso
para código idéntico ¿qué pasa si el commit no tiene conflicto pero introduce un cambio en el ABI?
Un revisor podría haber dado el visto bueno para un commit en main debido al rompimiento del
ABI pero podría no aprobar el mergeado del mismo commit tal cual. Cada uno tiene que usar su
mejor juicio hasta que acordemos unas directrices claras.

Para MFCs que están regulados por re@, se añaden nuevos campos de metadatos como la etiqueta
Approved by para commits aprobados. Estos nuevos metadatos se tendrán que añadir con git
commit --amend o similar después de que el commit original haya sido revisado y aprobado.

21

También podríamos querer reservar algunos campos en los metadatos de los commtis MFC como
las URLs de Phabricator para uso futuro por parte de re@.

Preservar los metadatos existentes proporciona un flujo de trabajo sencillo. Los desarrolladores
usan git cherry-pick-x sin tener que editar el mensaje de log.

Si por el contrario escogemos ajustar los metadatos en los MFCs, los desarrolladores tendrán que
editar los mensajes de log de forma explícita mediante el uso de git cherry-pick --edit o git
commit --amend. Sin embargo, comparado con svn, al menos el mensaje de commit existente se
puede precargar y los campos de metadatos se pueden añadir o eliminar sin tener que reescribir el
mensaje de commit entero.

La conclusión es que los desarrolladores seguramente tengan que refinar los mensajes de commit
para los MFCs que no sean triviales.

5.4. Importaciones Externas con Git
Esta sección describe en detalle el procedimiento para hacer importaciones de terceros con Git.

5.4.1. Convenciones en el nombrado de ramas

Todas las ramas de terceros y etiquetas comienzan con vendor/. Estas ramas y etiquetas son visibles
por defecto.

[NOTE] ==== Este capítulo sigue la convención de que el origen freebsd es el nombre del origen del
repositorio Git oficial de FreeBSD. Si usas otra convención, en los ejemplos de abajo reemplaza
freebsd con el nombre que uses en su lugar. ====

Exploraremos un ejemplo para actualizar el mtree de NetBSD que está en nuestro árbol. La rama
externa para esto es vendor/NetBSD/mtree.

5.4.2. Actualizando una importación externa antigua

Los árboles externos normalmente tienen sólo un subconjunto del software de terceros que es
apropiado para FreeBSD. Estos árboles son muy pequeños en comparación con el árbol de FreeBSD.
Los worktrees de Git son por lo tanto bastante pequeños y rápidos y el método preferido a usar.
Asegúrate de que el directorio que escojas debajo (el ../mtree) no existe.

% git worktree add ../mtree vendor/NetBSD/mtree

5.4.3. Actualizar las Fuentes en la Rama Vendor

Prepara un árbol limpio, completo con las fuentes externas. Importa todo pero mergea sólo lo que
es necesario.

Este ejemplo asume que las fuentes de NetBSD se han traído de su mirror de GitHub en
~/git/NetBSD. Date cuenta de que "upstream" podría haber añadido o eliminado ficheros, por lo que
queremos asegurarnos de que los borrados también se propagan. Normalmente net/rsync está

22

https://cgit.freebsd.org/ports/tree/net/rsync/

instalado así que lo usaremos.

% cd ../mtree
% rsync -va --del --exclude=".git" ~/git/NetBSD/usr.sbin/mtree/ .
% git add -A
% git status
...
% git diff --staged
...
% git commit -m "Vendor import of NetBSD's mtree at 2020-12-11"
[vendor/NetBSD/mtree 8e7aa25fcf1] Vendor import of NetBSD's mtree at 2020-12-11
 7 files changed, 114 insertions(+), 82 deletions(-)
% git tag -a vendor/NetBSD/mtree/20201211

Nota: Ejecuto los comandos git diff y git status para asegurarme de que no hay nada raro.
También usé -m de forma ilustrativa, pero tú deberías componer un mensaje apropiado en un
editor (usando una plantilla para el mensaje de commit).

También es importante crear una etiqueta anotada utilizando git tag -a, de lo contrario el push
será rechazado. Sólo se permite hacer push de etiquetas anotadas. Las etiquetas anotadas te dan
una oportunidad de introducir un mensaje de commit. Introduce la versión que estás importando
así como cualquier característica que resalte o arreglos que lleve la versión.

5.4.4. Actualizando la Copia de FreeBSD

En este momento puedes empujar la importación a vendor en nuestro propio repo.

% git push --follow-tags freebsd vendor/NetBSD/mtree

--follow-tags le dice a git push que también empuje las etiquetas asociadas con la revisión local de
la que se ha hecho commit.

5.4.5. Actualizando el árbol de fuentes de FreeBSD

Ahora necesitas actualizar el mtree en FreeBSD. Las fuentes están en contrib/mtree ya que es
software de terceros.

% cd ../src % git subtree merge -P contrib/mtree vendor/NetBSD/mtree

Esto generaría un commit merge para el subárbol contrib/mtree contra la rama local
vendor/NetBSD/mtree. Si hubiera conflictos, necesitarías arreglarlos antes de hacer el commit.
Incluye detalles en el mensaje de commit acerca de los cambios que se están mergeando.

23

5.4.6. Rebasando to cambio contra lo último del árbol de fuentes de
FreeBSD

Puesto que la política actual no recomienda utilizar meges, si el main de FreeBSD remoto avanzó
antes de que tuvieras oportunidad de hacer el push, tendrías que rehacer el merge.

Los git rebase o git pull --rebase habituales no saben cómo rebasar un commit tipo merge como
un commit merge, así que tendrías que recrear el commit.

Se deberían seguir los siguientes pasos para facilitar recrear el commit tipo merge como si git
rebase --merge-commits hubiese funcionado adecuadamente:

• Muévete al directorio raíz del repositorio

• Crea una rama XXX con el contenido del árbol mergeado.

• Actualiza este lado de la rama XXX para mergearla y tenerla actualizada respecto a la rama main
de FreeBSD.

◦ En el peor caso, tendrías que resolver conflictos, si hubiera alguno, pero esto debería ser
raro.

◦ Resuelve los conflictos, y compacta varios commits en uno si es necesario (si no hay
conflictos, no hay necesidad de compactar)

• Haz checkout de main

• crea una rama YYY (permite deshacer los cambios si algo va mal)

• Rehaz el merge del subárbol

• En lugar de resolver conflictos en el subárbol mergeado, haz un checkout del contenido de XXX
encima de él.

◦ El último . es importante, igual que lo es estar en el directorio raíz del repositorio.

◦ En lugar de cambiar a la rama XXX, pone el contenido de XXX sobre el repositorio.

• Haz commit del repositorio con el mensaje de commit anterior (el ejemplo asume que sólo hay
un merge en la rama XXX).

• Asegúrate de que las ramas son iguales.

• Haz las revisiones que necesites, incluyendo involucrar a otros si crees que es necesario.

• Empuja el commit, si has 'perdido la carrera' otra vez, simplemente haz otra vez estos pasos (lee
más abajo para una receta)

• Borra las ramas una vez que el commit está en el repositorio. Son desechables.

Los comandos que uno usaría, siguiendo el ejemplo de mtree, sería como esto (el símbolo # marca
un comentario para ayudar y enlazar los comandos con las descripciones de arriba):

% cd ../src # cambiar a la raíz del árbol
% git checkout -b XXX # crea la rama XXX de usar y tirar para hacer el merge
% git fetch freebsd # Obtiene los datos de upstream
% git merge freebsd/main # Mergea los cambios y resuelve conflictos
% git checkout -b YYY freebsd/main # Crea una nueva rama de usar y tirar YYY para

24

rehacer
% git subtree merge -P contrib/mtree vendor/NetBSD/mtree # Redo subtree merge
% git checkout XXX . # La rama XXX tiene la resolución del conflicto
% git commit -c XXX~1 # -c reutiliza el mensaje de commit del commit anterior al
rebase
% git diff XXX YYY # Debería estar vacío
% git show YYY # Sólo debería tener los cambios que quieres, y ser un commit
merge desde la rama del vendor

Nota: si algo va mal con el commit, puedes resetear la rama YYY para comenzar de nuev volviendo a
ejecutar el comando checkout que la creó con -B :

% git checkout -B YYY freebsd/main # Crea una nueva rama YYY de usar y tirar si
empezar desde cero es más sencillo

5.4.7. Empujando los cambios

Una vez que crees que tienes un conjunto de diferencias que es bueno, puedes empujarlo a un fork
de GitHub o Gitlab para que otros lo revisen. Una cosa buena de Git es que te permite publicar
borradores de tu trabajo para que otros lo revisen. Mientras que Phabricator es bueno para
revisión de contenido, publicar una rama externa actualizada y los commits tipo merge permite a
otros comprobar los detalles tal y como aparecerán eventualmente en el repositorio.

Después de la revisión, cuando estás seguro de que es un buen cambio, puedes empujarlo al repo
de FreeBSD:

% git push freebsd YYY:main # put the commit on upstream's 'main' branch % git branch
-D XXX # Throw away the throw-a-way branches. % git branch -D YYY

Nota: He usado XXX y YYY para que sea obvio que son nombres horribles que no deberían abandonar
tu máquina. Si usas esos nombres para otro trabajo, necesitarás escoger nombres diferentes, o
arriesgarte a perder el otro trabajo. No hay nada mágico sobre estos nombres. Upstream no te
permitirá empujarlos, pero de todas formas, por favor presta atención a los comandos exactos de
arriba. Algunos comandos usan sintaxis que es algo diferente respecto de los casos típicos y ese
comportamiento diferente es crítico para que esta receta funcione.

5.4.8. Como rehacer cosas si es necesario

Si has intentado empujar los cambios de la sección anterior y ha fallado, entonces deberías hacer lo
siguiente para 'rehacer' las cosas. Esta secuencia mantiene el commit cno el mensaje de commit
simpre en XXX~1 para que sea más fácil.

% git checkout -B XXX YYY # recreate that throw-away-branch XXX and switch to it %
git merge freebsd/main # Merge the changes and resolve conflicts % git checkout -B YYY
freebsd/main # Recreate new throw-away YYY branch for redo % git subtree merge -P
contrib/mtree vendor/NetBSD/mtree # Redo subtree merge % git checkout XXX . #

25

XXX branch has the conflict resolution % git commit -c XXX~1 # -c reuses the
commit message from commit before rebase

Después haz el checkout como arriba y empuja los cambios como arriba cuando estén listos.

5.5. Crear una nueva rama externa
Hay varias formas de crear una nueva rama externa. La forma recomendada es crear un nuevo
repositorio y después mergearlo con FreeBSD. Supongamos que se importa glorbnitz en el árbol de
FreeBSD, release 3.1415. Por simplicidad, no recortaremos esta release. Es un simple comando de
usuario que pone el dispositivo nitz en diferentes estados mágicos glorb y es suficientemente
pequeño como para que recortarlo no ahorre demasiado.

5.5.1. Crear el repo

% cd /some/where % mkdir glorbnitz % cd glorbnitz % git init % git checkout -b
vendor/glorbnitz

En este momento, tienes un nuevo repo, donde irán todos los commits de la rama vendor/glorbnitz.

Los expertos en Git pueden hacer esto directamente en su clon de FreeBSD usando git checkout
--orphan vendor/glorbnitz si así se sienten más cómodos.

5.5.2. Copia las fuentes

Puesto que es una nueva importación, puedes simplemente usar cp, o tar o incluso rsync como se
muestra arriba. Y añadiremos todo, asumiendo que no hay ficheros dot.

% cp -r ~/glorbnitz/* . % git add *

En este punto, deberías tener una copia prístina de glorbnitz lista para hacer commit.

% git commit -m "Import GlorbNitz frobnosticator revision 3.1415"

Como arriba, he usado -m por simplicidad, pero seguramente deberías crear un mensaje de commit
que explica qué es un Glorb y por qué usarías un Nitz para conseguirlo. No todo el mundo lo sabrá
así que para tu commit de verdad, deberías seguir la sección mensaje de log del commit en lugar de
emular el estilo corto utilizado aquí.

5.5.3. Ahora importa en nuestro repositorio

Ahora necesitas importar la rama en nuestro repositorio.

% cd /path/to/freebsd/repo/src % git remote add glorbnitz /some/where/glorbnitz % git

26

fetch glorbnitz vendor/glorbnitz

Fíjate que la rama vendor/glorbnitz está en el repo. En este momento puedes borrar
/some/where/glorbnitz si quieres. Ha cumplido su labor.

5.5.4. Etiquetas y push

Los pasos desde aquí en adelante son básicamente los mismos que en el caso de la actualización de
una rama externa, aunque sin el paso de actualizar la rama externa.

% git worktree add ../glorbnitz vendor/glorbnitz % cd ../glorbnitz % git tag
--annotate vendor/glorbnitz/3.1415 # Make sure the commit is good with "git show" %
git push --follow-tags freebsd vendor/glorbnitz

Por 'bueno' nos referimos a:

1. Todos los ficheros están presentes

2. Ninguno de los ficheros erróneos está presente

3. La rama vendor apunta a algo que tiene sentido

4. La etiqueta tienen buena pinta, y está anotada

5. El mensaje de commit para la etiqueta tiene un resumen con las novedades respecto de la
última etiqueta

5.5.5. Momento de mergear finalmente en el árbol base

% cd ../src
% git subtree add -P contrib/glorbnitz vendor/glorbnitz
Make sure the commit is good with "git show"
% git commit --amend # one last sanity check on commit message
% git push freebsd

Aquí 'bueno' significa:

1. Todos los ficheros correctos, y ninguno de los incorrectos, se mergearon en contrib/glorbnitz.

2. No hay otros cambios en el árbol.

3. Los mensajes de commit están bien. Debería contener un resumen de lo que ha cambiado desde
el último merge a la rama main de FreeBSD así como cualquier problema.

4. Se debería actualizar UPDATING si hay algo que reseñar, como cambios visibles por el usuario,
preocupaciones sobre la actualización, etc.


Todavía no hemos conectado glorbnitz a la construcción. Hacerlo es específico al
software que se importa y está fuera del alcance de este tutorial.

27

5.5.5.1. Mantenerse actualizado

El tiempo pasa. Es momento de actualizar el árbol con los últimos cambios. Cuando haces un
checkout de main asegúrate de que no tienes diferencias. Es mucho más fácil hacer commit de esos
cambios en una rama (o utilizar git stash) antes de hacer lo siguiente.

Si estás acostumbrado a git pull recomendamos encarecidamente el uso de la opción --ff-only y
además establecerla como la opción por defecto. De forma alternativ, git pull --rebase es útil si
tienes cambios guardados en la rama main.

% git config --global pull.ff only

Podrías necesitar omitir el --global si quieres que esta configuración sólo aplique en este
repositorio.

% cd freebsd-src % git checkout main % git pull (--ff-only|--rebase)

Hay un problema habitual, que la combinación del comando git pull intentará hacer un merge,
que algunas veces creará un commit de tipo merge que no existía antes. Esto puede ser difícil de
arreglar.

La forma larga también se recomienda.

% cd freebsd-src % git checkout main % git fetch freebsd % git merge --ff-only
freebsd/main

Estos comandos restauran tu árbol a la rama main y después lo actualizan desde donde hiciste el
pull originalmente. Es importante cambiarse a main antes de hacer esto de forma que avance. Ahora
es momento de avanzar los cambios:

% git rebase -i main working

Esto traerá un pantalla interactiva para cambiar los valores por defecto. Por ahora, simplemente sal
del editor. Todo debería aplicar. Si no, necesitarás resolver los diffs. Este documento de github te
puede ayudar en el proceso.

5.5.5.2. Momento de empujar los cambios

Primero, asegúrate de que la URL de push está correctamente configurada para el repositorio
remoto.

% git remote set-url --push freebsd ssh://git@gitrepo.freebsd.org/src.git

Después, verifica que el usuario y el email están correctamente configurados. Requerimos que
coincidan exactamente con la entrada del fichero passwd del clúster de FreeBSD.

28

https://docs.github.com/en/free-pro-team@latest/github/using-git/resolving-merge-conflicts-after-a-git-rebase

Usa

freefall% gen-gitconfig.sh

en freefall.freebsd.org para obtener un texto que puedes usar directamente, asumiendo que
/usr/local/bin está en el PATH.

El comando de abajo integra la rama working en la línea principal. Es importante que filtres tus
cambios para que sean justo lo que quieres en el repo de fuentes de FreeBSD antes de hacer esto.
Esta sintaxis empuja la rama working a main, avanzando la rama main. Sólo podrás hacer esto si
resulta en un cambio lineal a main(es decir, no merges).

% git push freebsd working:main

Si se rechaza tu push debido a que perdiste una carrera, haz un rebase de tu rama antes de
intentarlo de nuevo:

% git checkout working % git fetch freebsd % git rebase freebsd/main % git push
freebsd working:main

5.5.5.3. Momento de empujar los cambios (alternativa)

Algunas personas encuentran más fácil mergear sus cambios a su main local antes de empujarlos al
repositorio remoto. También git arc stage mueve los cambios de una rama al main local cuando
necesitas hacer un subconjunto de una rama. Las instrucciones son similares a las de la sección
anterior: [source,shell]

% git checkout main % git merge --ff-only `working` % git push freebsd

Si pierdes la carrera, inténtalo de nuevo con

% git pull --rebase % git push freebsd

Estos comandos recuperarán el freebsd/main más reciente y después rebasará los cambios del main
local encima, que es lo que quieres cuando pierdes una carrera por el commit. Nota: integrar
commits de ramas externas no funcionará con esta técnica.

5.5.5.4. Encontrar la Revisión de Subversion

Tendrás que asegurarte de que has recuperado las notas (lee Uso diario para más detalles). Una vez
que las tengas, las notas se mostrarán el comando git log de la siguiente forma:

% git log

29

Si tienes una versión específica en mente, puedes utilizar esto:

% git log --grep revision=XXXX

para encontrar la revisión específica. El número hexadecimal después de 'commit' es el hash que
puedes usar para referirte a este commit.

5.6. Git FAQ
Esta sección proporciona un número de respuestas para usuarios y desarrolladores a preguntas
que suelen surgir a menudo.



Usamos la convención habitual de tener el origen del repositorio de FreeBSD en
'freebsd' en lugar del 'origin' por defecto para permitir que la gente use ese para
sus propios desarrollo y para minimizar los pushes "ooops" al repositorio
incorrecto.

5.6.1. Usuarios

5.6.1.1. Cómo puedo monitorizar -current y -stable con una sola copia del repositorio?

Q: Aunque el espacio en disco no es un asunto importante, es más eficiente usar sólo una copia del
repositorio. Con SVN podía tener varios árboles del mismo repositorio. ¿Cómo hago esto con Git?

A: Puedes usar worktrees. Hay varias formas de hacer esto, pero la más sencilla es utilizar un clone
para monitorizar -current, y un worktree para hacer lo mismo con las releases stables. Aunque usar
un 'repositorio desnudo' se ha propuesto como una forma de lidiar con esto, es más complicado y
no se documentará aquí.

Primero, necesitas un clon de un repositorio de FreeBSD, mostrado aquí en freebsd-current para
reducir la confusión. $URL es el mirror que mejor que funcione:

% git clone -o freebsd --config remote.freebsd.fetch='+refs/notes/*:refs/notes/*' $URL
freebsd-current

que una vez clonado, puedes simplemente crear un worktree a partir de él:

% cd freebsd-current % git worktree add ../freebsd-stable-12 stable/12

esto se traerá stable/12 a un directorio llamado freebsd-stable-12 que es un análogo al directorio
freebsd-current. Una vez creado se actualiza de forma similar a como cabría esperar:

% cd freebsd-current % git checkout main % git pull --ff-only # changes from upstream
now local and current tree updated % cd ../freebsd-stable-12 % git merge --ff-only

30

freebsd/stable/12 # now your stable/12 is up to date too

Recomiendo usar --ff-only porque es más seguro y evita que te metas accidentalmente en una
'pesadilla de integraciones' donde tienes un cambio extra en tu árbol, forzándote a una integración
complicada en lugar de hacer uno sencillo.

Aquí hay un buen texto que tiene más detalles.

5.6.2. Desarrolladores

5.6.2.1. ¡Ooops! He hecho commit en main en lugar de en otra rama.

Q: De vez en cuando meto la pata y hago un commit en main en lugar de una rama. ¿Qué hago?

A: Primero, que no te entre el pánico.

Segundo, no hagas push. De hecho, puedes arreglar casi cualquier cosa si no has hecho push. Todas
las respuestas en esta sección asumen que no se ha hecho push.

La siguiente respuesta asume que has hecho commit en main y quieres crear una rama llamada
issue:

% git branch issue # Create the 'issue' branch
% git reset --hard freebsd/main # Reset 'main' back to the official tip
% git checkout issue # Back to where you were

5.6.2.2. ¡Ooops! ¡He hecho commit de algo en la rama equivocada!

Q: Estaba trabajando en una característica en la rama wilma, pero accidentalmente he hecho
commit de un cambio relacionado con la rama fred en la rama wilma. ¿Qué hago?

A: La respuesta es similar a la anterior pero escogiendo cambios (cherry picking). Se asume que
sólo hay un commit en wilma, pero lo generalizaremos a situaciones más complicadas. También se
asume que es el último commit en wilma (por lo tanto se usa wilma en el comando git cherry-
pick), pero también se puede generalizar.

We're on branch wilma % git checkout fred # move to fred branch % git cherry-
pick wilma # copy the misplaced commit % git checkout wilma # go back to
wilma branch % git reset --hard HEAD^ # move what wilma refers to back 1 commit

Los expertos en Git primero rebobinarían la rama wilma en 1 commit, cambiarían a la rama fred y
después usarían git reflog para ver cuál era el commit borrado para poder hacer cherry-pick
sobre él.

Q: Pero ¿Y si quiero hacer commit de unos cuantos cambios a main, pero dejar el resto en wilma por
algún motivo?

A: La misma técnica de arriba funciona si quieres llevar partes de la rama en la que estás

31

https://adventurist.me/posts/00296

trabajando a main antes de que el resto de la rama está listo (digamos que has visto un error
ortográfico no relacionado, o has arreglado un bug puntual). Puedes usar seleccionar esos cambios
y llevarlos a main, luego empuja al repositorio padre. Una vez hecho esto, limpiar no podría ser más
fácil: simplemente git rebase -i. Git se dará cuenta de que has hecho esto y omitirá los cambios
comunes automáticamente (incluso si tienes que cambiar el mensaje de commit o modificar el
commit ligeramente). No hay necesidad de cambiar de nuevo a wilma para ajustarlo: ¡simplemente
rebásalo!

Q: Quiero separar algunos cambios de la rama wilma y llevarlos a una rama fred

A: La respuesta más general sería la misma que previamente. Crearías la rama fred, escogerías los
cambios que quieres de wilma uno a uno, luego rebasa wilma para eliminar esos cambios que has
seleccionado. git rebase -i main wilma te llevará a un editor, luego elimina las líneas pick que se
corresponden con los cambios que has llevado a fred. Si todo va bien y no hay conflictos, has
terminado. Si no, necesitarás resolver los conflictos sobre la marcha.

La otra forma de hacer esto sería hacer un checkout de wilma y luego crear la rama fred apuntando
al mismo punto del árbol. Después puedes hacer git rebase -i en ambas ramas, seleccionando los
cambios que quieres en fred o wilma manteniendo las líneas "pick" y eliminando el resto en el
editor. Algunas personas crearían una etiqueta/rama llamada pre-split antes de empezar por si
algo va mal. Puedes deshacerlo con la siguiente secuencia:

% git checkout pre-split # Go back % git branch -D fred # delete the fred
branch % git checkout -B wilma # reset the wilma branch % git branch -d pre-
split # Pretend it didn't happen

El último paso es opcional. Si vas a intentar hacer el split de nuevo, lo omitirías.

Q: Pero lo he hecho todo como he leído que se hacía y no he visto tu consejo al final para crear una
rama y ahora fred y wilma están hechas un lío. ¿Cómo sé cuál era el estado de wilma antes de que
empezara? No sé cuántas veces he movido las cosas de sitio.

A: No todo está perdido. Puedes averiguarlo, siempre que no haya pasado mucho tiempo o haya
habido muchos commits (cientos).

Creé una rama wilma e hice commit de un par de cosas, luego decidí que quería dividirla en fred y
wilma. No pasó nada raro cuando lo hice, pero digamos que hubiera sido así. La forma de ver lo
que has hecho es con git reflog:

% git reflog 6ff9c25 (HEAD -> wilma) HEAD@{0}: rebase -i (finish): returning to
refs/heads/wilma 6ff9c25 (HEAD -> wilma) HEAD@{1}: rebase -i (start): checkout main
869cbd3 HEAD@{2}: rebase -i (start): checkout wilma a6a5094 (fred) HEAD@{3}: rebase -i
(finish): returning to refs/heads/fred a6a5094 (fred) HEAD@{4}: rebase -i (pick):
Encourage contributions 1ccd109 (freebsd/main, main) HEAD@{5}: rebase -i (start):
checkout main 869cbd3 HEAD@{6}: rebase -i (start): checkout fred 869cbd3 HEAD@{7}:
checkout: moving from wilma to fred 869cbd3 HEAD@{8}: commit: Encourage contributions
... %

32

Aquí vemos los cambios que he hecho. Puedes utilizarlo para averiguar dónde han empezado a ir
mal las cosas. Señalaré unas pocosas cosas. La primera es que HEAD@{X} es algo relacionado con
los commits de forma que lo puedes usar como argumento para algunos comandos. Aunque si ese
comando hace commit de algo en el repositorio, la X cambia. También puedes usar el hash (primera
columna).

Luego, 'Encourage contributions' fue el último commit que hice en wilma antes de que decidiera
separar las ramas. Puedes ver ahí el mismo hash que cuando creé la rama fred. Empecé rebasando
fred y puedes ver el 'start', cada paso y el 'finish' para ese proceso. Aunque no sea necesario ahora,
puedes averiguar exactamente lo que pasó. Afortunadamente, para arreglar esto, puedes seguir los
pasos de la respuesta anterior pero con el hash 869cbd3 en lugar de pre-split. Aunque puede
parecer un poco verboso, es fácil de recordar ya que haces una cosa cada vez. También puedes
apilar:

% git checkout -B wilma 869cbd3 % git branch -D fred

y ya estás listo para probar de nuevo. El 'checkout -B' con el hash combina hacer checkout y crear
una rama. El -B en lugar de -b fuerza el movimiento de una rama pre-existente. De cualquiera de las
maneras funciona, lo que está genial (y también es horrible) en Git. Un motivo por el que suelo usar
git checkout -B xxxx hash en lugar de hacer checkout del hash y después crear / mover la rama es
simplemente para evitar el mensaje ligeramente angustioso sobre los 'detached heads':

% git checkout 869cbd3 M faq.md Note: checking out '869cbd3'.

You are in 'detached HEAD' state. You can look around, make experimental changes and
commit them, and you can discard any commits you make in this state without impacting
any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may do so (now or
later) by using -b with the checkout command again. Example:

 git checkout -b <new-branch-name>

HEAD is now at 869cbd3 Encourage contributions % git checkout -B wilma

esto produce el mismo efecto, pero tengo que leer mucho más y las cabezas cortadas (detached
heads) no es una imagen que me guste contemplar.

5.6.2.3. ¡Ooops! He hecho un git pull y he creado un commit tipo merge, ¿qué hago?

Q: Estaba con el piloto automático y he hecho git pull desde mi árbol de desarrollo y eso ha creado
un commit tipo merge en la rama main. ¿Cómo lo recupero?

A: Esto puede pasar cuando invocas el pull con un checkout de tu rama de desarrollo.

Justo después del pull, tendrás en el checkout el nuevo commit tipo merge. Git soporta la sintaxis
HEAD^# para examinar los padres de un commit tipo merge:

33

git log --oneline HEAD^1 # Look at the first parent's commits
git log --oneline HEAD^2 # Look at the second parent's commits

A partir de esos logs, puedes identificar fácilmente qué commit es tu trabajo de desarrollo. Después
simplemente restaura tu rama al HEAD^# correspondiente:

git reset --hard HEAD^2

Q: Pero también necesito arreglar mi rama main. ¿Cómo lo hago?

A: Git controla las ramas del repositorio remoto en el espacio de nombres freebsd/. Para arreglar tu
rama main, simplemente ponla apuntando al main de tu remoto:

git branch -f main freebsd/main

No hay nada mágico en las ramas de Git: tan sólo son etiquetas en un grafo que se mueven
automáticamente hacia adelante cuando se hacen commits. Así que lo de arriba funciona porque
tan sólo estamos moviendo una etiqueta. Debido a ello, no hay metadatos de la rama que se
necesiten preservar.

5.6.2.4. Mezclando y combinando ramas

Q: Digamos que tengo dos ramas worker y async que me gustaría combinar en una rama llamada
feature a la vez que mantengo los commits de ambas.

A: Esto es trabajo para cherry pick.

% git checkout worker % git checkout -b feature # create a new branch % git cherry-
pick main..async # bring in the changes

Ahora tienes una nueva rama llamada feature. Esta rama combina commits de ambas ramas.
Puedes filtrar más utilizando git rebase.

Q: Tengo una rama llamada driver y me gustaría partirla en kernel y userland de forma que pueda
hacerlas evolucionar por separado y hacer commit en cada rama cuando estén listas.

A: Esto necesita un poco de trabajo preparatorio, pero git rebase hará todo el trabajo duro.

% git checkout driver # Checkout the driver % git checkout -b kernel # Create
kernel branch % git checkout -b userland # Create userland branch

Ahora tienes dos ramas idénticas. Es momento de separar los commits. Asumiremos inicialmente
que todos los commits de driver van en las ramas kernel o en userland pero no en ambas.

34

% git rebase -i main kernel

y simplemente incluye los cambios que quieres (con una línea 'p' o 'pick') y borra los commits que
no quieres (da miedo, pero si sucede lo peor, puedes tirar todo esto a la basura y empezar de nuevo
con la rama driver ya que todavía no la has movido).

% git rebase -i main userland

y haz lo mismo que hiciste con la rama kernel.

Q: ¡Oh, genial! Seguí las instrucciones de arriba y me olvidé de hacer commit en la rama kernel.
¿Cómo lo arreglo?

A: Puedes usar la rama driver para encontrar el hash del commit que falta y seleccionarlo con
cherry pick.

% git checkout kernel % git log driver % git cherry-pick $HASH

Q: OK. Tengo la misma situación que arriba, pero mis commits están todos mezclados. Necesito que
partes de un commit vayan a una rama y el resto a otra. De hecho, tengo varias. Tu método basado
en rebase suena complicado.

A: En esta situación, lo mejor sería filtrar la rama original para separar los commits y luego usar el
método descrito arriba para separar las ramas.

Asumamos que sólo hay un commit con un árbol limpio. Puedes usar git rebase con una línea edit
o puedes usarlo con el commit en el extremo (tip). Los pasos son los mismos de cualquiera de las
dos formas. Lo primero que tenemos que hacer es echar atrás un commit mientras dejamos los
cambios en el árbol sin hacer commit:

% git reset HEAD^

Nota: No añadas, repito no añadas --hard aquí porque esto también elimina los cambios de tu árbol.

Ahora, si tienes suerte, el cambio que necesita partirse cae completamente en las líneas del fichero.
En ese caso puedes hacer el git add habitual para los ficheros de cada grupo y luego hacer git
commit. Nota: cuando hagas esto, perderás el mensaje de commit al hacer el reset, así que si lo
necesitas por algún motivo, deberías guardar una copia (aunque git log $HASH puede recuperarlo).

Si no tienes suerte, tendrás que partir ficheros. Hay otra herramienta para hacer eso que puedes
aplicar en cada fichero.

git add -i foo/bar.c

iterará por los diffs, preguntándote a cada paso si quieres incluir o excluir un trozo del cambio.

35

Cuando hayas terminado, haz git commit y tendrás lo que quede en tu árbol. Puedes ejecutarlo
varias veces también o incluso en varios ficheros (aunque encuentro más fácil hacerlo en un
fichero cada vez y después utilizar git rebase -i para agrupar juntos commits que están
relacionados).

5.6.3. Clonar y Duplicar (crear un mirror)

Q: Me gustaría crear un mirror de todo el repositorio Git, ¿cómo lo hago?

A: Si todo lo que quieres es un mirror, entonces

% git clone --mirror $URL

hará lo que quieres. Sin embargo, hay dos desventajas si quieres utilizar esto para algo más que
hacer un mirror del cual crearás un clon.

Primero, esto es un 'repositorio desnudo' que tiene la base de datos del repositorio, pero no tiene
ningún worktree. Esto es genial para crear un mirror, pero es terrible para el trabajo del día a día.
Hay maneras de solventar esto con 'git worktree':

% git clone --mirror https://git.freebsd.org/ports.git ports.git % cd ports.git % git
worktree add ../ports main % git worktree add ../quarterly branches/2020Q4 % cd
../ports

Pero si no estás usando tu mirror para hacer más clones locales, entonces esta es una alternativa
algo pobre.

La segunda desventaja es que Git normalmente sobrescribe las refs (nombres de ramas, etiquetas,
etc) del repositorio remoto de forma que tus refs locales pueden evolucionar de forma
independiente. Esto significa que perderás los cambios si haces commit a este repositorio en
cualquier sitio que no sean ramas de proyectos privados.

Q: ¿Qué puedo hacer entonces?

A: Puedes agrupar todas las refs del repositorio remoto en un espacio de nombres privado en tu
repositorio local. Git clona todo mediante un 'refspec' y el refspec por defecto es:

 fetch = +refs/heads/*:refs/remotes/freebsd/*

que le dice que se traiga las refs de la rama.

Sin embargo, el repositorio de FreeBSD tiene otras cosas. Para verlas, puedes añadir refspects de
forma explícita para cada espacio de nombres o puedes traértelo todo. Para configurar tu
repositorio para que haga eso:

git config --add remote.freebsd.fetch '+refs/*:refs/freebsd/*'

36

que pondrá todo el repositorio remoto en tu espacio de nombres 'refs/freebsd/' de tu repositorio
local. Por favor, date cuenta de que esto también se trae ramas externas sin convertir y el número
de refs que tienen asociadas es bastante grande.

Necesitarás hacer referencia a estas 'refs' con su nombre completo porque no son espacios de
nombres regulares de Git.

git log refs/freebsd/vendor/zlib/1.2.10

mostraría el log de la rama externa para zlib comenzando en 1.2.10.

5.7. Colaborando con otros
Una de las claves para un buen desarrollo de software en un proyecto tan grande como FreeBSD es
la habilidad para colaborar con otros antes de que empujes tus cambios al árbol. Los repositorios
Git del proyecto FreeBSD todavía no permiten la creación de ramas de usuario que puedan ser
empujadas al repositorio y por lo tanto si quieres compartir tus cambios con otros debes usar otro
mecanismo como GitLab o GitHub, para compartir los cambios en una rama generada por el
usuario.

Las siguientes instrucciones muestran cómo preparar una rama de usuario, basada en la rama main
de FreeBSD y cómo empujarla a GitHub.

Antes de empezar, asegúrate de que tu repo local de Git está actualizado y tiene los orígenes
correctos como se muestra arriba.

` % git remote -v freebsd https://git.freebsd.org/src.git (fetch) freebsd
ssh://git@gitrepo.freebsd.org/src.git (push) `

El primer paso es crear un fork de FreeBSD en GitHub siguiendo estas instrucciones. El destino del
fork debería ser tu propia cuenta personal de GitHub (en mi caso gvnn3).

Ahora añade un remoto a tu sistema local que apunte a tu fork: [source,shell]

% git remote add github git@github.com:gvnn3/freebsd-src.git % git remote -v github
git@github.com:gvnn3/freebsd-src.git (fetch) github git@github.com:gvnn3/freebsd-
src.git (push) freebsd https://git.freebsd.org/src.git (fetch) freebsd
ssh://git@gitrepo.freebsd.org/src.git (push)

Una vez hecho esto puedes crear una rama como se muestra arriba.

% git checkout -b gnn-pr2001-fix

Haz las modificaciones que quieras en tu rama. Compila, prueba y una vez que estés listo para
colaborar con otros es momento de empujar tus cambios a la rama. Antes de que puedas hacerlo,
deberás establecer el upstream apropiado, ya que Git te lo pedirá la primera vez que intentes
empujar a tu remoto en github:

37

https://git.freebsd.org/src.git
https://git.freebsd.org/src.git
https://git.freebsd.org/src.git
https://github.com/freebsd/freebsd-src
https://docs.github.com/en/github/getting-started-with-github/fork-a-repo

% git push github fatal: The current branch gnn-pr2001-fix has no upstream branch. To
push the current branch and set the remote as upstream, use

 git push --set-upstream github gnn-pr2001-fix

Establecer el push como git recomienda hace que se pueda completar con éxito:

% git push --set-upstream github gnn-feature
Enumerating objects: 20486, done.
Counting objects: 100% (20486/20486), done.
Delta compression using up to 8 threads
Compressing objects: 100% (12202/12202), done.
Writing objects: 100% (20180/20180), 56.25 MiB | 13.15 MiB/s, done.
Total 20180 (delta 11316), reused 12972 (delta 7770), pack-reused 0
remote: Resolving deltas: 100% (11316/11316), completed with 247 local objects.
remote:
remote: Create a pull request for 'gnn-feature' on GitHub by visiting:
remote: https://github.com/gvnn3/freebsd-src/pull/new/gnn-feature
remote:
To github.com:gvnn3/freebsd-src.git
[new branch] gnn-feature -> gnn-feature
Branch 'gnn-feature' set up to track remote branch 'gnn-feature' from 'github'.

Los siguientes cambios en la rama se podrán empujar correctamente con el comando por defecto:

% git push
Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.
Delta compression using up to 8 threads
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 314 bytes | 1024 bytes/s, done.
Total 3 (delta 1), reused 1 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To github.com:gvnn3/freebsd-src.git
 9e5243d7b659..cf6aeb8d7dda gnn-feature -> gnn-feature

En este momento tu trabajo está en tu rama de GitHub y puedes compartir el enlace con otros
colaboradores.

5.8. Traer al proyecto una pull request de github
Esta sección documenta cómo traerse una pull request de GitHub que se ha hecho contra los mirros
de Git de FreeBSD en GitHub. Aunque en este momento esta no es una forma oficial de enviar
parches, a veces buenos arreglos vienen de esta forma y es más fácil cogerlos del árbol de un
committer que hacerles que lo empujen al árbol de FreeBSD desde ahí. Se pueden usar pasos
similares para traerse ramas de otros repositorios. Cuando se hace commit de pull requests de

38

otros, se debe tener especial cuidado en examinar todos los cambios para asegurar que son
exactamente lo que representan.

Antes de empezar, asegúrate de que tu repo local de Git está actualizado y de que tiene el origen
correctamente establecido como se muestra arriba. Además, asegúrate de tener los siguientes
orígenes: [source,shell]

% git remote -v freebsd https://git.freebsd.org/src.git (fetch) freebsd
ssh://git@gitrepo.freebsd.org/src.git (push) github
https://github.com/freebsd/freebsd-src (fetch) github
https://github.com/freebsd/freebsd-src (fetch)

Muchas veces las pull requests son sencillas: peticiones que contienen un sólo commit. En este caso,
se puede utilizar una aproximación directa, aunque la aproximación de la sección anterior también
funciona. Aquí se crea una rama, se selecciona el cambio con cherry pick, se ajusta el mensaje de
commit y se hacen controles de calidad antes de empujar el cambio. En este ejemplo se usa la rama
staging pero podría utilizarse cualquier nombre. Esta técnica funciona para cualquier número de
commits que haya en la pull request, especialmente cuando el cambio se puede aplicar
limpiamente al árbol de FreeBSD. Sin embargo, cuando hay varios commits, especialmente cuando
se necesitan pequeños ajustes, git rebase -i funciona mejor que git cherry-pick. Brevemente,
estos comandos crean una rama; seleccionan los cambios de la rama del pull request; los prueban;
ajustan los mensajes de commit; y lo mergean de vuelta a main haciendo un fast forward. El número
de PR abajo es $PR. Cuando se ajusta el mensaje, añade Pull Request: https://github.com/freebsd-
src/pull/$PR. Todas las pull requests enviadas al repositorio de FreeBSD deberían ser revisadas por
al menos una persona. No es necesario que sea la persona que hace el commit, pero en ese caso la
persona que lo hace debería confiar en la competencia de los otros revisores para revisar el
commit. Los committers que hacen revisión de código de una pull request antes de empujarla al
repo deberían añadir una línea Reviewed by: al commit, porque en este caso no es implícito. Añade
también a la línea Reviewed by: a cualquiera que revise y apruebe el commit en github. Como
siempre, se debe poner cuidado para asegurar que el código hace lo que se supone que hace y que
no hay código malicioso.



Además, por favor asegúrate de que el nombre del autor de la pull request no es
anónimo. El interfaz web de edición de GitHub genera nombres como:

Author: github-user <38923459+github-user@users.noreply.github.com>

Se debería hacer una solicitud educada al autor para que proporcione un nombre
mejor y/o un email. Se debería poner cuidado para asegurar de que no hay
problemas de estilo ni se introduce código malicioso.

% git fetch github pull/$PR/head:staging % git rebase -i main staging # to move the
staging branch forward, adjust commit message here <do testing here, as needed> % git
checkout main % git pull --ff-only # to get the latest if time has passed % git
checkout main % git merge --ff-only staging <test again if needed> % git push freebsd

39

https://github.com/freebsd-src/pull/$PR
https://github.com/freebsd-src/pull/$PR
https://github.com/freebsd-src/pull/$PR
https://github.com/freebsd-src/pull/$PR
https://github.com/freebsd-src/pull/$PR
https://github.com/freebsd-src/pull/$PR
https://github.com/freebsd-src/pull/$PR
https://github.com/freebsd-src/pull/$PR

--push-option=confirm-author

Para pull requests complicadas que tienen varios commits con conflictos, sigue el siguiente
esquema.

1. haz checkout de la pull request git checkout github/pull/XXX

2. crea una rama para hacer un rebase git checkout -b staging

3. rebasa la rama staging con lo último de main con git rebase -i main staging

4. resuelve conflictos y haz las pruebas que sean necesarias

5. haz fast forward de la rama staging in la rama main como arriba

6. últimas comprobaciones de cambios para asegurarse de que todo está bien

7. empuja al repositorio Git de FreeBSD.

Esto también funcionará cuando nos traigamos ramas desarrolladas en otros sitios hasta el
árbol local para hacer commit.

Una vez que hayas terminado con la pull request, ciérrala usando el interfaz web de GitHub.
Merece la pena mencionar que si tu origen github utiliza https://, el único paso para el que
necesitas una cuenta de GitHub es para cerrar la pull request.

6. Histórico del Control de Versiones
El proyecto se ha movido a git.

El repositorio fuente de FreeBSD pasó de CVS a Subversion el 31 de Mayo de 2008. El primer
commit real de SVN es r179447. El repositorio fuente cambió de Subversion a Git el 23 de Diciembre
de 2020. El último commit real de svn es r368820. El hash del primer commit real en git es
5ef5f51d2bef80b0ede9b10ad5b0e9440b60518c.

El repositorio doc/www de FreeBSD cambió de CVS a Subversion el 19 de Mayo de 2012. El primer
commit real de SVN es r38821. El repositorio de documentación cambió de Subversion a Git el 8 de
Diciembre de 2020. El último commit de SVN es r54737. El has del primer commit real de git es
3be01a475855e7511ad755b2defd2e0da5d58bbe.

El repositorio de ports de FreeBSD cambió de CVS a Subversion el 14 de Julio de 2012. El primer
commit real de SVN es r300894. El repositorio de ports cambió de Subversion a Git el 6 de Abril de
2021. El último commit de SVN es r569609. El hash del primer commit de git es
ed8d3eda309dd863fb66e04bccaa513eee255cbf.

40

7. Configuración, Convenciones y
Tradiciones
Hay una serie de cosas que hacer como nuevo desarrollador. La primera serie de pasos es
específica solamente para los committers. Estos pasos deben ser realizados por un mentor para
aquellos que no son committers.

7.1. Para los Nuevos Committers
Aquellos a los que se les han concedido derechos de envío a los repositorios de FreeBSD deben
seguir estos pasos.

• ¡Obtén aprobación de tu mentor para hacer commit de cada uno de estos cambios!

• Todos los commits de src van primero a FreeBSD-CURRENT antes de llevarse a FreeBSD-STABLE.
La rama FreeBSD-STABLE debe mantener la compatibilidad de ABI y API con versiones
anteriores de esa rama. No lleves cambios que rompan esta compatibilidad.

Pasos para los Nuevos Committers

1. Añade una Entidad de Autor

doc/shared/authors.adoc - Añade una entidad de autor. Los pasos posteriores dependen de
esta entidad, y saltarse este paso provocará que la construcción de doc/ falle. Esta es una
tarea relativamente sencilla, pero sigue siendo una buena primera tarea de prueba de las
habilidades de control de versiones.

2. Actualiza la Lista de Desarrolladores y Colaboradores

doc/shared/contrib-committers.adoc - Añade una entrada, la cual aparecerá en la sección
"Developers" de la ection of the Lista de Colaboradores. Las entradas están ordenadas por
apellido.

doc/shared/contrib-additional.adoc - Elimina la entrada. Las entradas están ordenadas por
nombre.

3. Añade un Ítem a las Noticias

doc/website/data/en/news/news.toml - Añade una entrada. Busca otras entradas que
anuncien nuevos committers y sigue el formato. Usa la fecha del correo de aprobación del
commit bit.

4. Añade una Clave PGP

Dag-Erling Smørgrav <des@FreeBSD.org> ha escrito un shell script
(doc/documentation/tools/addkey.sh) para hacerlos más fácil. Lee el fichero README para
más información.

Usa doc/documentation/tools/checkkey.sh para verificar que la clave cumple con el mínimo

41

https://docs.freebsd.org/en/articles/contributors/#staff-committers
mailto:des@FreeBSD.org
https://cgit.freebsd.org/doc/plain/documentation/static/pgpkeys/README

de las buenas prácticas estándar.

Después de añadir y comprobar la clave, añade ambos ficheros actualizados al control de
código y luego haz commit. Las entradas en este fichero están ordenadas por apellido.



Es muy importante tener una clave PGP/GnuPG actualizada en el
repositorio. Se podría requerir la clave para identificar a un committer.
Por ejemplo, el Administradores de FreeBSD <admins@FreeBSD.org> podría
necesitarlo para recuperar una cuenta. Hay un llavero completo de
usuarios de FreeBSD.org disponible para descarga desde
https://docs.FreeBSD.org/pgpkeys/pgpkeys.txt.

5. Actualiza la información del Mentor y el Alumno

src/share/misc/committers-<repository>.dot - Añade una entrada a la sección de
committers actuales, donde repository es doc, ports, o src, dependiendo de los privilegios de
commit concedidos.

Añade una entrada para cada relación mentor/alumno individual al final de la sección.

6. Genera una Contraseña de Kerberos

Lee Kerberos y contraseña web LDAP para el clúster de FreeBSD para generar o establecer
una cuenta de Kerberos para utilizarla con otros servicios de FreeBSD como la base de
datos de bugs (obtienes una cuenta en la base de datos como parte de ese paso).

7. Opcional: Activa la Cuenta de la Wiki

FreeBSD Wiki Account - Una cuenta en la wiki permite compartir proyectos e ideas.
Aquellos que todavía no tienen una cuenta pueden seguir las instrucciones en Wiki/About
page para obtener una. Contacta con wiki-admin@FreeBSD.org si necesitas ayuda con tu
cuenta Wiki.

8. Opcional: Actualiza la Información de la Wiki

Información en la Wiki - Después de obtener acceso a la wiki, algunas personas añaden
entradas a las páginas Cómo Hemos Llegado Aquí, Nicks de IRC, Perros de FreeBSD, y o
Gatos de FreeBSD.

9. Opcional: Actualiza los Ports con Información Personal

ports/astro/xearth/files/freebsd.committers.markers y
src/usr.bin/calendar/calendars/calendar.freebsd - Algunas personas añaden entradas para
ellos mismos a estos ficheros para mostrar dónde viven o su fecha de cumpleaños.

10. Opcional: Evita Correos Duplicados

Los subscriptores de Mensajes de commit para todas la ramas del repositorio doc, Mensajes
de commit para todas las ramas del repositorio de ports o Mensajes de commit para todas
las ramas del repositorio src podrían querer darse de baja para evitar recibir copias
duplicadas de los mensajes de commit y de sus continuaciones.

42

mailto:admins@FreeBSD.org
https://docs.FreeBSD.org/pgpkeys/pgpkeys.txt
https://bugs.freebsd.org/bugzilla/
https://bugs.freebsd.org/bugzilla/
https://wiki.freebsd.org
https://wiki.freebsd.org/Wiki/About
https://wiki.freebsd.org/Wiki/About
mailto:wiki-admin@FreeBSD.org
https://wiki.freebsd.org/HowWeGotHere
https://wiki.freebsd.org/IRC/Nicknames
https://wiki.freebsd.org/Community/Dogs
https://wiki.freebsd.org/Community/Cats
https://lists.FreeBSD.org/subscription/dev-commits-doc-all
https://lists.FreeBSD.org/subscription/dev-commits-ports-all
https://lists.FreeBSD.org/subscription/dev-commits-ports-all
https://lists.FreeBSD.org/subscription/dev-commits-src-all
https://lists.FreeBSD.org/subscription/dev-commits-src-all

7.2. Para Todos

1. Preséntate ante los otros desarrolladores, de otro modo nadie tendrá ni idea de quién eres
o en qué trabajas. La presentación no tiene que ser una biografía completa, tan sólo escribe
un párrafo o dos acerca de quién eres, en qué piensas trabajar como desarrollador de
FreeBSD, y quién será tu mentor. Envía este correo a Lista de correo de desarrolladores de
FreeBSD y habrás terminado. Entra en freefall.FreeBSD.org y crea un fichero
/var/forward/usuario (donde usuario es tu nombre de usuario) que contenga la dirección
de correo donde quieres que se reenvíen los correos dirigidos a
tunombredeusuario@FreeBSD.org. Esto incluye todos los mensajes de commit así como
cualquier otro correo enviado a Lista de correo para 'committers' de FreeBSD y a Lista de
correo de desarrolladores de FreeBSD. Los buzones de correo realmente grandes que están
en freefall podrían ser truncados sin previo aviso si se necesita liberar espacio, así que
reenvíalo o sálvalo en otra parte.


Si tu sistema de correo electrónico usa SPF con reglas estrictas, deberías
excluir mx2.FreeBSD.org de las comprobaciones de SPF.

Debido a la severa carga que tratar con SPAM produce en los servidores centrales de correo
que hacen el procesamiento de las listas de correo, el servidor front-end hace algunas
comprobaciones básicas y eliminará algunos mensajes basándose en estas
comprobaciones. En este momento sólo se comprueba la que la información de DNS para el
host que se conecta es la adecuada, pero esto podría cambiar. Algunas personas culpan a
estas comprobaciones de bloquear correo válido. Para deshabilitar estas comprobaciones
para tu correo, crea un fichero llamado ~/.spam_lover en freefall.FreeBSD.org.


Aquellos que sean desarrolladores pero no committers no estarán
suscritos a las listas de committers o desarrolladores. Las suscripciones se
derivan de los permisos de acceso.

7.2.1. Configuración de acceso SMTP

Para aquellos que deseen enviar mensajes de correo electrónico a través de la infraestructura de
FreeBSD.org, sigan las siguientes instrucciones:

1. Apunta tu cliente de correo a smtp.FreeBSD.org:587. Activa STATTLS. Asegúrate de que tu
dirección From: está establecida a tunombredeusuario@FreeBSD.org. Para la autenticación
puedes usar tu nombre de usuario de Kerberos y tu contraseña (lee Kerberos y contraseña
web LDAP para el clúster de FreeBSD). Se prefiere el tunombredeusuario/mail principal, ya
que sólo se usa para validar recursos de correo

 No incluyas FreeBSD.org cuando introduzcas tu nombre de usuario

2. Notas adicionales

43



◦ Sólo se aceptará correo desde tunombredeusuario@FreeBSD.org. Si estás
autenticado como un usuario, no se te permite enviar correo como
otro.

◦ Se añadirá una cabecera con el nombre de usuario SASL:
(Authenticated sender: username).

◦ La máquina tiene varios límites de velocidad para cortar los intentos
de fuerza bruta.

7.2.1.1. Uso de un MTA local para reenviar correos electrónicos al servicio SMTP de
FreeBSD.org

También es posible utilizar un MTA local para reenviar emails enviados localmente a los servidores
SMTP de FreeBSD.org.

Ejemplo 1. Usando Postfix

Para decirle a una instancia local de Postfix que se debería reenviar a los servidores
FreeBSD.org cualquier cosa que venga de tunombredeusuario@FreeBSD.org, añade esto a tu
main.cf:

sender_dependent_relayhost_maps = hash:/usr/local/etc/postfix/relayhost_maps
smtp_sasl_auth_enable = yes smtp_sasl_security_options = noanonymous
smtp_sasl_password_maps = hash:/usr/local/etc/postfix/sasl_passwd smtp_use_tls =
yes

Crea /usr/local/etc/postfix/relayhost_maps con el siguiente contenido:

tunombredeusuario@FreeBSD.org [smtp.freebsd.org]:587

Crea /usr/local/etc/postfix/sasl_passwd con el siguiente contenido:

[smtp.freebsd.org]:587 tunombredeusuario:tucontraseña

Si otras personas utilizan el servidor de correo electrónico, es posible que quieras evitar que
envíen correos electrónicos desde tu dirección. Para lograr esto, agrega esto a tu main.cf:

smtpd_sender_login_maps = hash:/usr/local/etc/postfix/sender_login_maps
smtpd_sender_restrictions = reject_known_sender_login_mismatch

Crea /usr/local/etc/postfix/sender_login_maps con el siguiente contenido:

tunombredeusuario@FreeBSD.org tunombredeusuariolocal

44

Donde tunombredeusuariolocal es el nombre de usuario SASL utilizado para conectar a la
instancia local de Postfix.

Ejemplo 2. Usando OpenSMTPD

Para decirle a una instancia local de OpenSMTPD que se debería reenviar a los sevidores
FreeBSD.org cualquier cosa que venga de tunombredeusuario@FreeBSD.org, añade esto a tu
smtpd.conf:

action "freebsd" relay host smtp+tls://freebsd@smtp.freebsd.org:587 auth <secrets>
match from any auth yourlocalusername mail-from "_yourusername_@freebsd.org" for
any action "freebsd"

Donde tunombredeusuariolocal es el nombre de usuario SASL utilizado para conectar a la
instancia local de OpenSMTPD.

Crea /usr/local/etc/mail/secrets con el siguiente contenido:

freebsd tunombredeusuario:tucontraseña

Ejemplo 3. Usando Exim

Para decirle a una instancia local de Exim que se debería reenviar a los sevidores
FreeBSD.ORG cualquier cosa que venga de example@FreeBSD.org añade esto a tu configuration
de Exim:

Routers section: (at the top of the list):
freebsd_send:
 driver = manualroute
 domains = !+local_domains
 transport = freebsd_smtp
 route_data = ${lookup {${lc:$sender_address}} lsearch
{/usr/local/etc/exim/freebsd_send}}

Transport Section:
freebsd_smtp:
 driver = smtp
 tls_certificate=<local certificate>
 tls_privatekey=<local certificate private key>
 tls_require_ciphers =
EECDH+ECDSA+AESGCM:EECDH+aRSA+AESGCM:EECDH+ECDSA+SHA384:EECDH+ECDSA+SHA256:EECDH+a
RSA+SHA384:EECDH+aRSA+SHA256:EECDH+AESGCM:EECDH:EDH+AESGCM:EDH+aRSA:HIGH:!MEDIUM:!
LOW:!aNULL:!eNULL:!LOW:!RC4:!MD5:!EXP:!PSK:!SRP:!DSS
 dkim_domain = <local DKIM domain>
 dkim_selector = <local DKIM selector>
 dkim_private_key= <local DKIM private key>

45

 dnssec_request_domains = *
 hosts_require_auth = smtp.freebsd.org

Authenticators:
fixed_plain:
 driver = plaintext
 public_name = PLAIN
 client_send = ^example/mail^examplePassword

Crea /usr/local/etc/exim/freebsd_send con el siguiente contenido:

example@freebsd.org:smtp.freebsd.org::587

7.3. Mentores
Todos los nuevos desarrolladores tienen un mentor asignado durante los primeros meses. Un
mentor es responsable de enseñar a los aprendices las reglas y convenciones del proyecto y de
guiar sus primeros pasos en la comunidad de desarrolladores. El mentor también es personalmente
responsable de las acciones de los aprendices durante este período inicial.

Para los committers: no envíes nada sin obtener primero la aprobación del mentor. Documenta esa
aprobación con una línea Approved by: en el mensaje de commit.

Cuando el mentor decide que un aprendiz ha aprendido las reglas y está listo para hacer envíos por
su cuenta, el mentor lo anuncia con un commit en mentors. Este archivo está en la rama huérfana
admin de cada repositorio. Se puede encontrar información detallada sobre cómo acceder a estas
ramas en rama "admin".

8. Revisión previa al commit
La revisión de código es una forma de incrementar la calidad del software. Las siguientes guías
aplican a los commits a la rama main(-CURREN) del repositorio src. Otras ramas y los árboles ports y
docs tienen sus propias políticas, pero estas directrices aplican generalmente a commits que
necesitan revisión:

• Todos los cambios no triviales deberían ser revisados antes de hacer commit en el repositorio.

• Las revisiones se pueden realizar por email, en Bugzilla, en Phabricator, o por otro mecanismo.
Cuando sea posible, las revisiones deberían ser públicas.

• El desarrollador responsable de un cambio de código también es responsable de hacer todos los
cambios relacionados con la revisión.

• La revisión de código puede ser un proceso iterativo, que continúa hasta que el parche está listo
para ser comprometido. Específicamente, una vez que se envía un parche para su revisión,
debes recibir un "looks good" explícito antes de hacer commit. Siempre que sea explícito, esto
puede tomar cualquier forma que tenga sentido para el método de revisión.

46

• Los timeouts no sustituyen una revisión.

A veces las revisiones de los códigos tardan más de lo que se espera, especialmente para las
funciones más grandes. Las formas aceptadas de acelerar los tiempos de revisión de tus parches
son:

• Revisa los parches de otras personas. Si tú ayudas, todo el mundo estará más dispuesto a hacer
lo mismo por ti; la buena voluntad es nuestra moneda.

• Avisa del parche. Si es urgente, proporciona razones por las que es importante que este parche
sea incluido y avisa cada dos días. Si no es urgente, la cortesía habitual es llamar la atención
sobre el parche una vez a la semana. Recuerda que estás pidiendo tiempo valioso de otro
desarrollador profesional.

• Pide ayuda en las listas de correo, IRC, etc. Otros podrían ser capaces de ayudarte directamente,
o de sugerir un revisor.

• Parte tu parche en varios parches más pequeños que se apliquen uno sobre otro. Cuanto más
pequeño sea tu parche, más alta será la probabilidad de que alguien le eche un vistazo.

Cuando hagas cambios grandes, es útil tener en cuenta esto desde el comienzo ya que romper
cambios en trozos más pequeños es normalmente difícil al hacerlo más tarde.

Los desarrolladores deben participar en las revisiones de código como revisores y revisados. Si
alguien tiene la amabilidad de revisar tu código, deberías devolverle el favor a otra persona. Ten en
cuenta que aunque cualquiera es bienvenido a revisar y dar su opinión sobre un parche, sólo un
experto en la materia puede aprobar un cambio. Normalmente será un especialista que trabaje con
el código en cuestión de forma regular.

En algunos casos, es posible que no se disponga de un experto en la materia. En esos casos, basta
con un examen por parte de un desarrollador experimentado cuando se combina con las pruebas
apropiadas.

9. Mensajes de Commit
Esta sección contiene algunas sugerencias y tradiciones sobre cómo se formatean los mensajes de
commit.

9.1. ¿Por qué son importantes los mensajes de
commit?
Cuando haces commit en Git, Subversion, o cualquier otro sistema de control de versiones (VCS), se
te pide un texto que describa el cambio — un mensaje de commit. ¿Cómo de importante es este
mensaje? ¿Deberías dedicar un esfuerzo significativo escribiéndolo? ¿Realmente importa si
escribes simplemente "arregla un bug"?

La mayoría de los proyectos tienen más de un desarrollador y duran un tiempo determinado. Los
mensajes de commit son un método muy importante de comunicación con otros desarrolladores,
en el presente y para el futuro.

47

FreeBSD tiene cientos de desarrolladores activos y cientos de miles de commits a lo largo de
décadas de historia. Durante ese tiempo la comunidad de desarrolladores ha aprendido cómo de
valiosos son los buenos mensajes de commit; a veces se ha tenido que aprender a la fuerza.

Los mensajes de commit sirven al menos tres propósitos:

• Comunicándote con otros desarrolladores

Los commits en FreeBSD generan emails en varias listas de correo. Estos incluyen el mensaje de
commit junto con una copia del propio parche. Los mensajes de commit también se visualizan a
través de comandos como git log. Esto sirve para que otros desarrolladores sean conscientes de
los cambios que se están produciendo; que otro desarrollador podría querer probar el cambio,
podría tener un interés en el asunto en cuestión y querrá revisarlo en más detalle, o que podría
tener sus propios proyectos en curso que se beneficiarían de una posible interacción entre
ambos.

• Haciendo que los Cambios sean Descubribles

En un proyecto grande con mucha historia podría ser difícil encontrar cambios de interés
cuando se está investigando un problema o un cambio de comportamiento. Los mensajes de
commit largos y detallados permiten buscar cambios que podrían ser relevantes. Por ejemplo,
git log --since 1year --grep 'USB timeout'.

• Proporcionando documentación histórica

Los mensajes de commit se utilizan para documentar los cambios para los futuros
desarrolladores, quizás años o décadas más tardes. Este desarrollador futuro podrías ser tú, el
autor original. Un cambio que hoy podría resultar obvio, podría no serlo mucho tiempo
después.

El comando git blame anota cada línea de un fichero fuente con el cambio (hash y línea de título)
que lo incorporó.

Habiendo establecido su importancia, aquí hay algunos ejemplos de buenos mensajes de commit en
FreeBSD:

9.2. Comienza con una línea para el título
Los mensajes de commit deberían empezar con una sola línea para el título que resume
brevemente el cambio. El título, por sí mismo, debería permitir al lector determinar de forma
rápida si el cambio tiene algún interés o no.

9.3. Mantén las líneas de título cortas
La línea de título debería ser lo más corta posible a la vez que mantiene la información requerida.
Esto hace que navegar el log de Git sea más eficiente, y también que git log --oneline pueda mostrar
el hash corto y el título en una línea de 80 columnas. Una buena regla básica es mantenerse por
debajo de 63 caracteres, e intentar hacerlo en 50 o menos si es posible.

48

9.4. Añade al título un prefijo para el componente si
aplica
Si el cambio está relacionado con un componente específico, se puede añadir ala línea del título un
prefijo con el nombre del componente y dos puntos (:).

✓ foo: Add -k option to keep temporary data

Incluye el prefijo en el límite de 63 caracteres sugerido arriba, de forma que git log --oneline evite
partir la línea.

9.5. Usa mayúsculas para la primera letra del título
Utiliza mayúscula en la primera letra del título. El prefijo, si lo hay, no utiliza mayúsculas a menos
que sea necesario (por ejemplo, USB: va en mayúsculas).

9.6. No termines el título con punto
No termines en punto o con cualquier otro signo de puntuación. En este aspecto la línea de título es
como el titular de un periódico.

9.7. Separa el título y el cuerpo con una línea en
blanco
Separa el cuerpo del título con una línea en blanco.

Algunos commits triviales no necesitan cuerpo y tendrán sólo un título.

✓ ls: Fix typo in usage text

9.8. Limita los mensajes a 72 columnas
git log y git format-patch tabulan el mensaje de commit utilizando cuatro espacios. Cortar en 72
columnas proporciona un margen en el borde derecho. Limitar los mensajes a 72 caracteres
también mantiene el mensaje de commit en parches formateados bajo el límite de longitud de línea
de email de 78 caracteres fijado en el RFC 2822. Este límite funciona bien con un buen número de
herramientas que podrían mostrar mensajes de commit; el cortado de líneas podría ser
inconsistente con longitudes de línea más largas.

9.9. Usa el modo presente en imperativo
Esto favorece las líneas de título cortas y proporciona consistencia, incluyendo la generación
automática de mensajes de commit (ejemplo, como los generados por git revert). Esto es importante
cuando se lee una lista de títulos de commit. Piensa en los títulos como las partes finales de la frase
"cuando se aplica, este cambio…".

49

✓ foo: Implement the -k (keep) option
✗ foo: Implemented the -k option
✗ This change implements the -k option in foo
✗ -k option added

9.10. Céntrate en el qué y el por qué, no en el cómo
Explica qué hace el cambio y por qué se ha hecho, en lugar de cómo lo hace.

No asumas que el lector está familiarizado con el asunto. Explica los antecedentes y la motivación
para el cambio. Incluye datos de pruebas si los tienes.

Si hay limitaciones o aspectos incompletos del cambio, descríbelos en el mensaje de commit.

9.11. Considera si hay partes del mensaje de commit
que podrían ser en realidad comentarios de código
A veces mientras escribes un mensaje de commit puedes ver que estás escribiendo un par de frases
explicando algún aspecto confuso del cambio. Cuando esto suceda considera si sería valioso tener
esa explicación también en el código en forma de comentario.

9.12. Escribe mensajes de commit para tu yo del futuro
Mientras escribes un mensaje de commit para un cambio tienes todo el contexto en la cabeza - qué
motivó el cambio, aproximaciones alternativas que se consideraron y fueron rechazadas,
limitaciones del cambio y demás. Imagínate a ti mismo revisitando el cambio en uno o dos años y
escribe el mensaje de commit de forma que proporcione el contexto necesario.

9.13. Los mensajes de commit deberían ser
autocontenidos
Puedes incluir referencias a mensajes de la lista de correo, resultados de pruebas en sitios web, o
enlaces a revisiones de código. Sin embargo, los mensajes de código deberían contener toda la
información relevante en caso de que estas referencias ya no estén disponibles en el futuro.

De forma similar, un commit podría referenciar un commit anterior, por ejemplo en el caso de un
arreglo y una marcha atrás. Además del identificador del commit (revisión o hash), incluye la línea
de título del commit referenciado (u otra referencia breve que sirva). Con cada migración de VCS
(de CVS a Subversion a Git) los identificadores de revisión de los sistemas previos podrían ser
difíciles de seguir.

9.14. Incluye los metadatos apropiados al pie
Además de incluir un mensaje informativo con cada envío, es posible que se necesite información
adicional.

50

Esta información consta de una o más líneas que contienen la palabra o frase clave, dos puntos,
pestañas para formatear y, a continuación, la información adicional.

Las palabras o frases clave son:

PR: El informe de error (si lo hay) que se ve afectado (típicamente, cerrándolo) por
este commit. Se pueden especificar varios PRs en una línea, separados por
comas o espacios.

Reported by: El nombre y dirección de correo de la persona que reportó el problema: para
desarrolladores sólo el nombre de usuario en el clúster de FreeBSD.
Típicamente utilizando cuando no hay PR, por ejemplo si el problema fue
reportado en una lista de correo.

Submitted by:
(deprecated)

Esto es obsoleto con git; los parches enviados deberían tener el autor
establecido usando git commit --author con un nombre completo y una
dirección de email válida.

Reviewed by: El nombre y dirección de correo de la persona o personas que revisaron el
cambio; para los desarrolladores tan solo el nombre de usuario en el clúster
de FreeBSD. Si se envió un parche a la lista de correo para ser revisado y la
revisión fue favorable, entonces simplemente incluye el nombre de la lista. Si
el revisor no es un miembro del proyecto, proporciona el nombre, email y si es
el caso de ports un rol externo como el de mantenedor:

Revisado por un desarrollador:

Reviewed by: username

Revisado por un mantenedor de ports que no es un desarrollador:

Reviewed by: Full Name <valid@email> (maintainer)

Tested by: El nombre y dirección de correo de la persona o personas que probaron el
cambio; para desarrolladores, sólo el nombre de usuario en el clúster de
FreeBSD.

51

Approved by: El nombre y la dirección de correo de la persona o personas que aprobaron el
cambio; para desarrolladores el nombre de usuario en el clúster de FreeBSD.

Hay varios casos donde se suele necesitar aprobación:

• cuando un committer todavía está bajo tutorización

• commits en un are del árbol cubierto bajo el fichero LOCKS (srv)

• durante el ciclo de liberación

• hacer commit a un repo en el que no tienes commit bit (por ejemplo un
committer de src haciendo commit en docs)

• hacer commit a un port que mantenga otra persona

Mientras estés aprendiendo, obtén aprobación de tu mentor antes de hacer
commit. Introduce el nombre de usuario del mentor en este cambio y haz
referencia a que es un mentor:

Approved by: username-of-mentor (mentor)

Si los commits los aprueba un grupo incluye el nombre del grupo seguido del
nombre de usuario entre paréntesis de la persona que aprobó. Por ejemplo:

Approved by: re (username)

Obtained from: El nombre el proyecto (si aplica) del que se obtuvo el código. No uses esta línea
para el nombre de una persona individual.

Fixes: El hash corto de Git y la línea de título del commit que se arregla con este
cambio tal y como lo devuelve git log -n 1 --oneline GIT-COMMIT-HASH.

MFC after: Para recibir un correo con un recordatorio para hacer MFC posteriormente,
especifica el número de días, semanas o meses después de los cuales se planea
hacer el MFC.

MFC to: Si el commit se debe mergear a un subconjunto de ramas estables, especifica
los nombres de las ramas.

MFH: Si el commit se debe mergear a una rama trimestral de ports, especifica la
rama trimestral. Por ejemplo 2021Q2.

Relnotes: Si el cambio es candidato para inclusión en las notas de la versión para la
siguiente versión de la rama, establece el campo a yes.

Security: Si el cambio está relacionado con una vulnerabilidad de seguridad o riesgo de
seguridad, incluye una o más referencias o una descripción del problema. Si es
posible incluye una URL de VuXML o un ID de CVE.

52

Event: La descripción del evento donde se hizo este commit. Si es un evento
recurrente, añade el año o incluso el mes. Por ejemplo, podría ser FooBSDcon
2019. La idea de esta línea es darle reconocimiento a las conferencias,
reuniones y otro tipo de encuentros y mostrar que son útiles. Por favor no
utilices la línea Sponsored by: para esto ya que se utiliza para organizaciones
que son patrocinadores de ciertas características o de desarrolladores que
trabajan en ellas.

Sponsored by: Organizaciones que patrocinan este cambio, si aplica. Separa varias
organizaciones con comas. Si sólo se patrocinó una parte del trabajo, o
distintos autores patrocinaron a distintos niveles, por favor, da el crédito
apropiado entre paréntesis después de cada nombre de los patrocinadores.
Por ejemplo, Example.com (alice, refactorización de código), Wormulon
(bob), Momcorp (cindy) muestra que Alice fue patrocinada por Example.com
para hacer refactorización de código, mientras que Wormulon patrocinó el
trabajo de Bob y Momcorp patrocinó el trabajo de Cindy. Otros autores o no
fueron patrocinados o escogieron no listar dicho patrocinio.

Pull Request: Este cambio fue enviado como una pull request o merge request contra uno de
los repositorios Git de sólo lectura de FreeBSD. Debería incluir la URL
completa de la pull request, ya que normalmente sirve para hacer la revisión
del código. Por ejemplo: https://github.com/freebsd/freebsd-src/pull/745

Co-authored-by: The name and email address of an additional author of the commit. GitHub
has a detailed description of the Co-authored-by trailer at
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/
creating-and-editing-commits/creating-a-commit-with-multiple-authors.

Signed-off-by: El ID certifica que cumple con https://developercertificate.org/

Differential
Revision:

La URL completa de la revisión de Phabricator. Esta línea debe ser la última
línea. Por ejemplo: https://reviews.freebsd.org/D1708.

Ejemplo 4. Registro de compromiso para un compromiso basado en un PR

El commit se basa en un parche en un PR enviado por John Smith. El cambio "PR" del mensaje
de commit está relleno.

...

PR: 12345

El committer establece el autor del parche con git commit --author "John Smith
<John.Smith@example.com>".

Ejemplo 5. Confirmar registro para una confirmación que necesita revisión

Se está cambiando el sistema de memoria virtual. Después de publicar los parches en la lista
de correo correspondiente (en este caso, freebsd-arch) y los cambios han sido aprobados.

53

https://github.com/freebsd/freebsd-src/pull/745
https://github.com/freebsd/freebsd-src/pull/745
https://github.com/freebsd/freebsd-src/pull/745
https://github.com/freebsd/freebsd-src/pull/745
https://github.com/freebsd/freebsd-src/pull/745
https://github.com/freebsd/freebsd-src/pull/745
https://github.com/freebsd/freebsd-src/pull/745
https://github.com/freebsd/freebsd-src/pull/745
https://github.com/freebsd/freebsd-src/pull/745
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/creating-and-editing-commits/creating-a-commit-with-multiple-authors
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/creating-and-editing-commits/creating-a-commit-with-multiple-authors
https://developercertificate.org/
https://reviews.freebsd.org/D1708
https://reviews.freebsd.org/D1708
https://reviews.freebsd.org/D1708
mailto:John.Smith@example.com

...

Reviewed by: -arch

Ejemplo 6. Registro de compromiso para un compromiso que necesita aprobación

HAcer un commit de un port, después de trabajar con el MAINTAINER, quien dio el visto bueno
para hacer el commit.

...

Approved by: abc (maintainer)

Donde abc es el nombre de la cuenta de la persona que lo aprobó.

Ejemplo 7. Commit Log para una confirmación que trae código desde OpenBSD

Hacer commit de código basado en el trabajo realizado en el proyecto OpenBSD.

...

Obtained from: OpenBSD

Ejemplo 8. Commit Log para un cambio en FreeBSD-CURRENT con un compromiso planificado en FreeBSD-
STABLE para seguir en una fecha posterior.

Haciendo commit de un código que se fusionará de FreeBSD-CURRENT en la rama FreeBSD-
STABLE después de dos semanas.

...

MFC after: 2 weeks

Donde 2 es el número de días, semanas, o meses después de los cuales se planea hacer un MFC.
La opción weeks podría ser day, days, week, weeks, month, months.

A menudo es necesario combinarlos.

Considera la situación en la que un usuario ha enviado un PR que contiene código del proyecto
NetBSD. Mirando el PR, el desarrollador ve que no es un área del árbol en la que trabaja
habitualmente de forma que se solicita que el cambio sea revisado por la lista de correo arch. Como
el cambio es complejo, el desarrollador opta por hacer MFC después de un mes para permitir que se

54

hagan las pruebas adecuadas.

La información adicional para incluir en la confirmación sería algo así como

Ejemplo 9. Ejemplo de Registro de Commit Combinado

PR: 54321
Reviewed by: -arch
Obtained from: NetBSD
MFC after: 1 month
Relnotes: yes

10. Licencia preferida para los nuevos
archivos
La política completa de licencias del Proyecto FreeBSD se puede encontrar en
https://www.FreeBSD.org/internal/software-license. El resto de esta sección está pensada para
ponerte en funcionamiento. Como regla, cuando tengas dudas, pregunta. Es mucho más fácil dar
consejo que arreglar el árbol de fuentes.

El Proyecto FreeBSD sugiere y usa este texto como el esquema de licencia preferido:

/*-
 * SPDX-License-Identifier: BSD-2-Clause
 *
 * Copyright (c) [year] [your name]
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

55

https://www.FreeBSD.org/internal/software-license/

 * SUCH DAMAGE.
 *
 * [id for your version control system, if any]
 */

El proyecto FreeBSD desaconseja rotundamente la denominada "cláusula publicitaria" en el nuevo
código. Debido a la gran cantidad de colaboradores al proyecto FreeBSD, cumplir con esta cláusula
para muchos proveedores comerciales se ha vuelto difícil. Si tienes código en el árbol con la
cláusula publicitaria, considera eliminarlo. De hecho, considera usar la licencia anterior para tu
código.

El proyecto FreeBSD desaconseja licencias completamente nuevas y variaciones de las licencias
estándar. Las nuevas licencias requieren la aprobación del core@FreeBSD.org para que se añadan
al repositorio src. Cuantas más licencias diferentes se utilicen en el árbol, más problemas
ocasionará a quienes deseen utilizar este código, por lo general debido a las consecuencias no
deseadas de una licencia mal redactada.

La política del proyecto dicta que el código de algunas licencias que no sean BSD debe colocarse
solo en secciones específicas del repositorio y, en algunos casos, la compilación debe ser
condicional o incluso deshabilitada de forma predeterminada. Por ejemplo, el núcleo GENERIC
debe compilarse únicamente bajo licencias idénticas o sustancialmente similares a la licencia BSD.
El software con licencia GPL, APSL, CDDL, etc., no debe compilarse en GENERIC.

Se recuerda a los desarrolladores que en el código abierto, conseguir "abrir" correctamente es tan
importante como conseguir una "fuente" correcta, ya que el manejo inadecuado de la propiedad
intelectual tiene graves consecuencias. Cualquier pregunta o inquietud debe comunicarse
inmediatamente al Core Team.

11. Seguimiento de las licencias concedidas
al proyecto FreeBSD
Existen varias piezas de software y datos en los repositorios para los cuales se ha concedido al
proyecto FreeBSD una licencia especial de uso. Un caso de ejemplo es la fuente Terminus para
utilizar con vt(4). Aquí el autor Dimitar Zhekov nos ha permitido utilizar la fuente "Terminus BSD
Console" bajo una licencia BSD de dos cláusulas en lugar de las licencia regular Open Font License
que utiliza é normalmente.

Conviene claramente mantener un registro de dichas concesiones de licencias. Para tal fin,
core@FreeBSD.org ha decidido mantener un archivo de ellas. Cuando se le otorga al proyecto
FreeBSD una licencia especial, obligamos a que se notifique a core@FreeBSD.org. A cualquier
desarrollador involucrado en acordar dichas concesiones de licencia, por favor, envía los detalles a
core@FreeBSD.org incluyendo:

• Datos de contacto de personas u organizaciones que otorgan la licencia especial.

• Qué archivos, directorios, etc. de los repositorios están cubiertos por la concesión de licencia,
incluidos los números de revisión donde se comprometió cualquier material con licencia
especial.

56

mailto:core@FreeBSD.org
https://man.freebsd.org/cgi/man.cgi?query=vt&sektion=4&format=html
mailto:core@FreeBSD.org
mailto:core@FreeBSD.org
mailto:core@FreeBSD.org

• La fecha en que la licencia entra en vigor. A menos que se acuerde lo contrario, esta será la
fecha en que la licencia fue emitida por los autores del software en cuestión.

• El texto de la licencia.

• Una nota de cualquier restricción, limitación o excepción que se aplique específicamente al uso
de FreeBSD del material licenciado.

• Cualquier otra información relevante.

Una vez que core@FreeBSD.org está satisfecho con todos los detalles necesarios que se han
recopilado y que estos son correctos, el secretario enviará un acuse de recibo firmado con PGP que
incluye los detalles de la licencia. Este recibo se almacenará de forma persistente y servirá como
registro permanente de la concesión de la licencia.

El archivo de licencias sólo debería contener detalles de las concesiones de licencias; no es lugar
para discusiones acerca de licencias en sí u otros asuntos. El acceso a los datos del fichero de
licencias estará disponible bajo petición al core@FreeBSD.org.

12. Etiquetas SPDX en el árbol
El proyecto utiliza etiquetas SPDX en nuestra base de fuentes. En este momento, las etiquetas están
indentadas para ayudar a las herramientas automáticas a reconstruir los requisitos de las licencias
mecánicamente. Todas las etiquetas SPDX-License-Identifier en el árbol deberían considerarse
informativas. Todos los ficheros en el árbol de fuentes de FreeBSD con estas etiquetas también
tienen una copia de la licencia de gobierna el uso de dicho fichero. En el caso de alguna
discrepancia, la licencia literal es la que domina. El proyecto intenta seguir la SPDX Specification,
Version 2.2. Se puede ver cómo crear ficheros fuente y expresiones algebraicas válidas en Appendix
IV y Appendix V. El proyecto extrae identificadores de la lista de identificadores cortos de licencias
de SPDX. El proyecto sólo utiliza la etiqueta SPDX-License-Identifier.

A fecha de Marzo de 2021, se han marcado aproximadamente 25,000 de los 90,000 ficheros en el
árbol.

13. Relaciones con los desarrolladores
Cuando trabajes directamente en tu propio código o en un código que ya está bien establecido como
tu responsabilidad, entonces probablemente haya poca necesidad de verificar con otros committers
antes de hacer un commit. Cuandoo trabajes en un arreglo para un error en un área del sistema
que está claramente huérfana (y hay algunas áreas de este tipo, para nuestra vergüenza), se aplica
lo mismo. Cuando modifiques partes del sistema que se mantienen, formal o informalmente,
considera solicitar una revisión tal como lo haría un desarrollador antes de convertirse en un
committer. Para ports, contacta con el MAINTAINER que aparece listado en el Makefile.

Para determinar si se mantiene un área del árbol, consulta el archivo MAINTAINERS en la raíz del
árbol. Si no aparece nadie, escanea el historial de revisiones para ver quién ha realizado cambios
en el pasado. Para listar los nombres y direcciones de correo de todos los autores de commits de un
fichero concreto en los dos últimos años y el número de commits de cada autor, ordenado por
número descendente de commits, usa:

57

mailto:core@FreeBSD.org
mailto:core@FreeBSD.org
https://spdx.dev
https://spdx.github.io/spdx-spec/
https://spdx.github.io/spdx-spec/
https://spdx.github.io/spdx-spec/appendix-IV-SPDX-license-expressions/
https://spdx.github.io/spdx-spec/appendix-IV-SPDX-license-expressions/
https://spdx.github.io/spdx-spec/appendix-V-using-SPDX-short-identifiers-in-source-files/
https://spdx.org/licenses/

% git -C /path/to/repo shortlog -sne --since="2 years" -- relative/path/to/file

Si las consultas quedan sin respuesta o el committer de otro modo indica una falta de interés en el
área afectada, continúa adelante y realiza el commit.


Evita enviar correos electrónicos privados a los mantenedores. Otras personas
podrían estar interesadas en la conversación, no sólo en el resultado final.

Si hay alguna duda sobre un commit por cualquier motivo, hazlo revisar antes de realizar el
commit. Es mejor que reciba críticas en ese mismo momento que cuando es parte del repositorio. Si
un commit da lugar a que surja una controversia, puede ser aconsejable considerar deshacer el
cambio hasta que se resuelva el asunto. Recuerda, con un sistema de control de versiones siempre
podemos volver a cambiarlo.

No impugnes las intenciones de los demás. Si ven una solución diferente a un problema, o incluso
un problema diferente, probablemente no sea porque sean estúpidos, porque tienen una
paternidad cuestionable o porque están tratando de destruir el trabajo duro, la imagen personal o
FreeBSD, sino básicamente porque tienen una perspectiva diferente del mundo. Diferente es bueno.

Discrepa de forma honesta. Argumenta tu posición desde sus méritos, sé honesto acerca de
cualquier deficiencia que puedas tener y mantente abierto a ver su solución, o incluso su visión del
problema, con una mente abierta.

Acepta la corrección. Todos cometemos errores. Cuando hayas cometido un error, discúlpate y
sigue con tu vida. No te castigues a ti mismo, y ciertamente no castigues a otros por tu error. No
pierdas el tiempo en vergüenza o recriminación, simplemente soluciona el problema y sigue
adelante.

Pide ayuda. Busca (y proporciona) revisiones de pares. Una de las formas en que se supone que el
software de código abierto sobresale es en la cantidad de ojos que se le aplican; esto no se aplica si
nadie revisa el código.

14. Si tienes dudas …
Cuando no estés seguro de algo, ya sea un problema técnico o una convención del proyecto,
asegúrate de preguntar. Si te quedas en silencio, nunca progresarás.

Si se relaciona con un problema técnico, pregunta en las listas de correo públicas. Evita la tentación
de enviar un correo electrónico a la persona que conoce la respuesta. De esta manera, todos podrán
aprender de la pregunta y la respuesta.

Para preguntas administrativas o específicas del proyecto, pregunta, en orden:

• Tu mentor o ex mentor.

• Un cometer experimentado en IRC, correo electrónico, etc.

• Cualquier equipo con "sombrero", ya que pueden darte una respuesta definitiva.

58

• Si aún así no estás seguro, pregunta en Lista de correo de desarrolladores de FreeBSD.

Una vez que se responda tu pregunta, si nadie te indicó la documentación que detalla la respuesta a
tu pregunta, documenta, ya que otros tendrán la misma pregunta.

15. Bugzilla
El proyecto FreeBSD utiliza Bugzilla para rastrear errores y solicitudes de cambio. Si haces un
commit de un arreglo o una sugerencia que está en la base de datos de PR asegúrate de cerrarlo.
También se considera bueno si te tomas tiempo para cerrar cualquier PR asociado con tus commits,
si corresponde.

Committers sin una cuenta FreeBSD.org en Bugzilla pueden fusionar la antigua cuenta con su cuenta
FreeBSD.org siguiendo los siguientes pasos:

1. Inicie sesión con su cuenta anterior.

2. Abre un nuevo bug. Escoge Services como Product y Bug Tracker como Component. En la
descripción del bug lista las cuentas que quieres fusionar.

3. Haz login utilizando la cuenta FreeBSD.org y haz un comentario en el bug recién abierto
para confirmar la propiedad. Visita Kerberos y contraseña web LDAP para el clúster de
FreeBSD para más detalles sobre cómo generar o establecer una contraseña para tu cuenta
FreeBSD.org.

4. Si hay más de dos cuentas para fusionar, publique comentarios de cada una de ellas.

Puedes encontrar más acerca de Bugzilla en:

• FreeBSD Problem Report Handling Guidelines

• https://www.FreeBSD.org/support

16. Phabricator
El Proyecto FreeBSD utiliza Phabricator para las solicitudes de revisión de código. Visita la página
de la wiki de Phabricator para más detalles.

Committers sin una cuenta FreeBSD.org en Phabricator pueden fusionar la antigua cuenta con su
cuenta FreeBSD.org siguiendo los siguientes pasos:

1. Cambia tu cuenta de correo de Phabricator a tu dirección FreeBSD.org.

2. Abre un nuevo informe de error en nuestra base de datos usando tu cuenta FreeBSD.org,
visita Bugzilla para más información. Escoge Services como Product y Code Review como
Component. En la descripción del bug solicita que se renombre tu cuenta de Phabricator y
proporciona un enlace a tu usuario de Phabricator. Por ejemplo,
https://reviews.freebsd.org/p/bob_example.com/

59

https://docs.freebsd.org/es/articles/pr-guidelines/
https://www.FreeBSD.org/support/
https://reviews.freebsd.org
https://wiki.freebsd.org/Phabricator
https://wiki.freebsd.org/Phabricator
https://reviews.freebsd.org/p/bob_example.com/
https://reviews.freebsd.org/p/bob_example.com/
https://reviews.freebsd.org/p/bob_example.com/
https://reviews.freebsd.org/p/bob_example.com/
https://reviews.freebsd.org/p/bob_example.com/


Las cuentas de Phabricator no se pueden fusionar, por favor no abras una cuenta
nueva.

17. Quien es Quien
Además de los meisters del repositorio, hay otros miembros y equipos del proyecto FreeBSD a los
que probablemente conocerá en su rol de committer. Brevemente, y de ninguna manera todo
incluido, estos son:

Grupo de Ingeniería de Documentación <doceng@FreeBSD.org>

doceng es el grupo responsable de la infraestructura de construcción de documentación,
aprobar nuevos committers de documentación, y asegurar que el sitio web de FreeBSD y la
documentación en el sitio FTP están actualizados respecto del árbol de Subversion. No es un
órgano de resolución de conflictos. La mayoría de las discusiones relacionadas con
documentación tienen lugar en Lista de correo del proyecto de documentación de FreeBSD. Se
pueden encontrar más detalles acerca del equipo de doceng en su charter. Los committers
interesados en contribuir a la documentación se deberían familiarizar con el Documentation
Project Primer.

Sergio Carlavilla Delgado <carlavilla@FreeBSD.org>, Dave Cottlehuber <dch@FreeBSD.org>, Marc
Fonvieille <blackend@FreeBSD.org>, Craig Leres <leres@FreeBSD.org>, Xin Li <
delphij@FreeBSD.org>, Ed Maste <emaste@FreeBSD.org>, Colin Percival <cperciva@FreeBSD.org>,
Muhammad Moinur Rahman <bofh@FreeBSD.org>, Vladlen Popolitov <vladlen@FreeBSD.org>, Lexi Winter
<ivy@FreeBSD.org>, Alexander Ziaee <ziaee@FreeBSD.org>

Estos son los miembros del equipo de ingeniería de versiones Grupo de Ingeniería de Releases
<re@FreeBSD.org>. Este equipo es responsable de establecer los plazos de publicación y controlar
el proceso de publicación. Durante la congelación del código, los ingenieros de versiones tienen
la autoridad final sobre todos los cambios en el sistema para cualquier rama que tenga el estado
de versión pendiente. Si hay algo que quieras incluir de FreeBSD-CURRENT a FreeBSD-STABLE
(independientemente de los valores que puedan tener en un momento dado), estas son las
personas con las que hablar al respecto.

Gordon Tetlow <gordon@FreeBSD.org>

Gordon Tetlow es el FreeBSD Security Officer y supervisa el Grupo Responsables de Seguridad
<security-officer@FreeBSD.org>.

Lista de correo para 'committers' de FreeBSD

{dev-src-all}, {dev-ports-all} y {dev-doc-all} son las listas de correo que utiliza el sistema de
control de versiones para mandar mensajes de commit. Nunca envíes correo directamente a esas
listas. Envía sólo respuestas a esta lista cuando son cortas y directamente relacionadas con un
commit.

Lista de correo de desarrolladores de FreeBSD

Todos los committers están suscritos a -developers. Esta lista se creó como un foro para los
asuntos relacionados con la "communidad" de committers. Ejemplos son las votaciones de Core,
anuncios, etc.

60

mailto:doceng@FreeBSD.org
https://lists.FreeBSD.org/subscription/freebsd-doc
https://www.FreeBSD.org/internal/doceng/
https://docs.freebsd.org/en/books/fdp-primer/
https://docs.freebsd.org/en/books/fdp-primer/
mailto:carlavilla@FreeBSD.org
mailto:dch@FreeBSD.org
mailto:blackend@FreeBSD.org
mailto:leres@FreeBSD.org
mailto:delphij@FreeBSD.org
mailto:emaste@FreeBSD.org
mailto:cperciva@FreeBSD.org
mailto:bofh@FreeBSD.org
mailto:vladlen@FreeBSD.org
mailto:ivy@FreeBSD.org
mailto:ziaee@FreeBSD.org
mailto:re@FreeBSD.org
mailto:gordon@FreeBSD.org
https://www.FreeBSD.org/security/
mailto:security-officer@FreeBSD.org

La Lista de correo de desarrolladores de FreeBSD es de uso exclusivo de los committers de
FreeBSD. Para desarrollar FreeBSD, los committers deben tener la capacidad de discutir asuntos
abiertamente que se resolverán antes de que sean anunciados públicamente. Discusiones con
franqueza sobre el trabajo en curso no son aptas para la publicación abierta y podrían dañar a
FreeBSD.

Se espera que todos los committers de FreeBSD no publiquen ni reenvíen mensajes de la lista de
correo de desarrolladores de FreeBSD fuera de la membresía de la lista sin el permiso de todos
los autores. Los infractores serán eliminados de la lista de correo de desarrolladores de FreeBSD,
lo que resultará en la suspensión de los privilegios de commit. Las violaciones repetidas o
flagrantes pueden resultar en la revocación permanente de los privilegios de commit.

Esta lista no está pensada como un sito para hacer revisiones de código o para otras cuestiones
técnicas. De hecho utilizarla para eso daña el Proyecto FreeBSD ya que le da un aire de lista
cerrada donde las decisiones que afectan a toda la comunidad que usa FreeBSD no se hacen de
forma "abierta". Por último, pero no menos importante, nunca, nunca, nunca, mandes un correo
a {developers-mail} y pongas en CC:/BCC: a otra lista de FreeBSD. Nunca, nunca envíes correo a
otra lista de correo de FreeBSD con CC:/BCC: a la Lista de correo de desarrolladores de FreeBSD.
Hacerlo puede disminuir los beneficios de esta lista.

18. Guía de inicio rápido de SSH

1. Si no quieres escribir tu contraseña cada vez que uses ssh(1), y utilizas claves para
autenticar, ssh-agent(1) está aquí para ayudarte. Si quieres usar ssh-agent(1), asegúrate de
ejecutarlo antes que otras aplicaciones. Los usuarios de X, por ejemplo, normalmente
hacen esto en su .xsession o .xinitrc. Lee ssh-agent(1) para más detalles.

2. Genera un par de claves con ssh-keygen(1). El clave de pares terminará en tu directorio
$HOME/.ssh/.

 Sólo se soportan claves ECDSA, Ed25519 o RSA.

3. Envía tu clave pública ($HOME/.ssh/id_ecdsa.pub, $HOME/.ssh/id_ed25519.pub, o
$HOME/.ssh/id_rsa.pub) a la persona que te está dando de alta como committer de forma
que la pueda poner en yourlogin en /etc/ssh-keys/ en freefall.

Ahora se puede usar ssh-add(1) para autenticarse una vez por sesión. Solicita la frase de paso de la
clave privada y después la almacena en el agente de autenticación (ssh-agent(1)). Utiliza ssh-add -d
para eliminar las claves almacenadas en el agente.

Pruébalo con un comando remoto sencillo: ssh freefall.FreeBSD.org ls /usr.

Para más información, lee security/openssh-portable, ssh(1), ssh-add(1), ssh-agent(1), ssh-keygen(1),
y scp(1).

Para información sobre cómo añadir, cambiar o eliminar claves ssh(1), lee este artículo.

61

https://man.freebsd.org/cgi/man.cgi?query=ssh&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh-agent&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh-agent&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh-agent&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh-keygen&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh-add&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh-agent&sektion=1&format=html
https://cgit.freebsd.org/ports/tree/security/openssh-portable/
https://man.freebsd.org/cgi/man.cgi?query=ssh&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh-add&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh-agent&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh-keygen&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=scp&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=ssh&sektion=1&format=html
https://wiki.freebsd.org/clusteradm/ssh-keys

19. Disponibilidad de Coverity® para los
Committers de FreeBSD
Todos los desarrolladores de FreeBSD pueden obtener acceso a los resultados de análisis de
Coverity para todo el software del Proyecto FreeBSD. Todo aquel que esté interesado en el acceso a
los resultados de análisis de las ejecuciones automáticas de Coverity, pueden registrarse en Coverity
Scan.

La wiki de FreeBSD incluye una mini-guía para desarrolladores interesados en trabajar con los
informes de análisis de Coverity®: https://wiki.freebsd.org/CoverityPrevent. Por favor, ten en
cuenta que esta mini-guía sólo es accesible para los desarrolladores de FreeBSD, así que si no
puedes acceder a esta página, tendrás que pedirle a alguien que te añada a la lista de acceso
apropiada de la Wiki.

Por último, a todos los desarrolladores de FreeBSD que vayan a usar Coverity® se les anima a
preguntar por más detalles e información de uso, mediante el envío de preguntas a la lista de
correo de desarrolladores de FreeBSD.

20. La gran lista de reglas de los Committers
de FreeBSD
Todo aquel involucrado en el proyecto FreeBSD debe seguir el Código de Conducta disponible en
https://www.FreeBSD.org/internal/code-of-conduct. Como committer, tú eres la cara visible del
proyecto y cómo te comportas tiene un impacto vital en la percepción pública del mismo. Esta guía
expande las partes del Código de Conducta específicas para committers.

1. Respeta a los demás committers.

2. Respeta a otros colaboradores.

3. Discute cualquier cambio significativo antes de hacer commit.

4. Respeta los mantenedores que existan (si están listados en el campo MAINTAINER en Makefile o en
MAINTAINER en el directorio raíz).

5. Cualquier cambio en disputa debe ser anulado en espera de la resolución de la disputa si lo
solicita un mantenedor. Los cambios relacionados con la seguridad pueden anular los deseos
del mantenedor a discreción del oficial de seguridad.

6. Los cambios van a FreeBSD-CURRENT antes de FreeBSD-STABLE a menos que el ingeniero de
versiones lo permita específicamente o que no sean aplicables a FreeBSD-CURRENT. Cualquier
cambio no trivial o no urgente que sea aplicable también debe permitirse que permanezca en
FreeBSD-CURRENT durante al menos 3 días antes de fusionarse para que se puedan realizar las
pruebas suficientes. El ingeniero de versiones tiene la misma autoridad sobre la rama FreeBSD-
STABLE que se describe para el mantenedor en la regla # 5.

7. No luches en público con otros committers; se ve mal.

8. Respeta la congelación de código y lee las listas de correo de committers y developers
regularmente de forma que sepas que hay una congelación de código en marcha.

62

http://scan.coverity.com/
http://scan.coverity.com/
https://wiki.freebsd.org/CoverityPrevent
https://www.FreeBSD.org/internal/code-of-conduct/

9. En caso de duda sobre cualquier procedimiento, ¡pregunta primero!

10. Prueba tus cambios antes de realizarlos.

11. No hagas commit en software contribuido sin aprobación explícita de los respectivos
mantenedores.

Como se señaló anteriormente, romper algunas de estas reglas puede ser motivo de suspensión o,
en caso de reincidencia, eliminación permanente de los privilegios de committer. Los miembros
individuales de core tienen el poder de suspender temporalmente los privilegios de commit hasta
que core en su conjunto tenga la oportunidad de revisar el problema. En caso de "emergencia" (un
committer que daña el repositorio), los meisters del repositorio también pueden realizar una
suspensión temporal. Solo una mayoría de 2/3 de core tiene la autoridad para suspender los
privilegios de commit durante más de una semana o para eliminarlos permanentemente. Esta regla
no existe para que core se convierta en un grupo de dictadores crueles que pueden deshacerse de
los responsables de manera tan casual como las latas de refresco vacías, sino para darle al proyecto
una especie de mecanismo de seguridad. Si alguien está fuera de control, es importante poder lidiar
con esto de inmediato en lugar de quedar paralizado por el debate. En todos los casos, un comitter
cuyos privilegios se suspenden o revocan tiene derecho a una "vista" ante core, determinándose en
ese momento la duración total de la suspensión. Un committer cuyos privilegios estén suspendidos
también puede solicitar una revisión de la decisión después de 30 días y cada 30 días a partir de
entonces (a menos que el período total de suspensión sea inferior a 30 días). Un committer cuyos
privilegios hayan sido revocados por completo puede solicitar una revisión después de que haya
transcurrido un período de 6 meses. Esta política de revisión es "estrictamente informal" y, en todos
los casos, core se reserva el derecho de actuar o ignorar las solicitudes de revisión si sienten que su
decisión original es la correcta.

En todos los demás aspectos de la operación del proyecto, core es un subconjunto de committers y
está vinculado por las mismas reglas. El hecho de que alguien esté en core no significa que tenga
una dispensación especial para salir de cualquiera de las líneas pintadas aquí; los "poderes
especiales" de core solo se activan cuando actúa como grupo, no de forma individual. Como
individuos, los miembros del equipo central son todos committers primero y miembros de core en
segundo lugar.

20.1. Detalles
1. Respeta a los demás committers.

Esto significa que debes tratar a los demás committers como los desarrolladores de grupos de
iguales que son. A pesar de nuestros ocasionales intentos de demostrar lo contrario, uno no
llega a committer siendo estúpido y nada irrita más que ser tratado de esa manera por uno de
sus compañeros. Si siempre sentimos respeto por los demás o no (y todos tienen días libres),
todavía tenemos que tratar a otros committers con respeto en todo momento, en foros públicos
y en correos privados.

Poder trabajar juntos a largo plazo es el mayor activo de este proyecto, uno mucho más
importante que cualquier conjunto de cambios en el código, y convertir los argumentos sobre el
código en problemas que afectan nuestra capacidad a largo plazo para trabajar juntos en
armonía simplemente no vale la pena. -abandonado por cualquier tramo concebible de la

63

imaginación.

Para cumplir con esta regla, no envíes correos electrónicos cuando estés enfadado o te
comportes de una manera que pueda parecer a los demás como una confrontación innecesaria.
Primero cálmate, luego piensa en cómo comunicarte de la manera más efectiva para convencer
a las otras personas de que tu lado del argumento es correcto, no te desahogues un poco para
sentirte mejor en el corto plazo a costa de una guerra de llamas a largo plazo. No solo esto es
una mala "economía energética", sino que las demostraciones repetidas de agresión pública que
perjudican nuestra capacidad para trabajar bien juntos serán tratadas severamente por el
liderazgo del proyecto y pueden resultar en la suspensión o terminación de tus privilegios de
commit. El liderazgo del proyecto tendrá en cuenta tanto las comunicaciones públicas como las
privadas que se le presenten. No buscará la divulgación de comunicaciones privadas, pero la
tendrá en cuenta si es voluntaria por parte de los autores de la denuncia.

Todo esto nunca es una opción de la que disfrute en lo más mínimo el liderazgo del proyecto,
pero la unidad es lo primero. Ninguna cantidad de código o buen consejo se puede cambiar por
esta unidad.

2. Respeta a otros colaboradores.

No siempre fuiste un committer. Hubo un tiempo en que contribuiste. Recuerda eso en todo
momento. Recuerda lo que fue tratar de obtener ayuda y atención. No olvides que tu trabajo
como colaborador fue muy importante para ti. Recuerda cómo fue. No desanimes, menosprecies
o hagas de menos a los voluntarios. Trátalos con respeto. Son nuestros committers en espera.
Son tan importantes para el proyecto como los committers. Sus contribuciones son tan válidas e
importantes como las tuyas. Después de todo, hiciste muchas contribuciones antes de
convertirse en committer. Recuerda eso siempre.

Considera los puntos mencionados en Respeta a otros committers y aplícalos también a los
voluntarios.

3. Discute cualquier cambio significativo antes de hacer commit.

El repositorio no es donde los cambios se envían inicialmente para su corrección o para ser
discutidos, eso ocurre primero en las listas de correo o mediante el uso del servicio Phabricator.
El commit solo ocurrirá una vez que se haya alcanzado algo parecido al consenso. Esto no
significa que se requiera permiso antes de corregir todos los errores de sintaxis obvios o errores
ortográficos de la página del manual, solo que es bueno desarrollar una idea de cuándo un
cambio propuesto no es tan obvio y requiere algunos comentarios primero. A la gente
realmente no le importan los cambios radicales si el resultado es claramente mejor que lo que
tenían antes, simplemente no les gusta ser sorprendidos por esos cambios. La mejor manera de
asegurarse de que todo va por buen camino es hacer que el código sea revisado por uno o más
committers.

En caso de duda, ¡solicite una revisión!

4. Respeta a los mantenedores existentes si están listados como tales.

Muchas partes de FreeBSD no tienen "dueño" en el sentido de que cualquier individuo saltará
sobre ti y te gritará si haces un cambio en "su" área, pero aún así merece la pena comprobarlo

64

primero. Una convención que usamos es poner una linea "maintainer" en el Makefile para
cualquier paquete o subárbol que es mantenido de forma activa por una o más personas; visita
see Directrices y Políticas del Árbol de Fuentes para obtener documentación sobre esto. Donde
hay secciones de código con varios mantenedores, los commits efectuados por un mantenedor
en dicha área deben ser revisados por al menos otro mantenedor. En los casos donde el
mantenimiento de algo no está claro, mira los logs del repositorio para los ficheros en cuestión y
mira si alguien ha estado trabajando recientemente o de forma predominante en esa área.

5. Cualquier cambio en disputa debe ser anulado en espera de la resolución de la disputa si lo
solicita un mantenedor. Los cambios relacionados con la seguridad pueden anular los deseos
del mantenedor a discreción del oficial de seguridad.

Esto puede ser difícil de aceptar en tiempos de conflicto (cuando cada parte está convencida de
que tienen razón, por supuesto), pero un sistema de control de versiones hace innecesario tener
una disputa en curso cuando es mucho más fácil simplemente revertir el cambio, para calmar a
todos nuevamente y luego intentar averiguar cuál es la mejor manera de proceder. Si el cambio
resulta ser lo mejor después de todo, se puede recuperar fácilmente. Si resulta que no es así,
entonces los usuarios no tenían que vivir con el falso cambio en el árbol mientras todos
debatían afanosamente sus méritos. La gente muy raramente pide deshacer cambios en el
repositorio, ya que la discusión generalmente expone cambios malos o controvertidos incluso
antes de que ocurra la confirmación, pero en ocasiones tan raras, el retroceso debe hacerse sin
discutir para que podamos pasar inmediatamente al tema de resolver si era falso o no.

6. Los cambios van a FreeBSD-CURRENT antes de FreeBSD-STABLE a menos que el ingeniero de
versiones lo permita específicamente o que no sean aplicables a FreeBSD-CURRENT. Cualquier
cambio no trivial o no urgente que sea aplicable también debe permitirse que permanezca en
FreeBSD-CURRENT durante al menos 3 días antes de fusionarse para que se puedan realizar las
pruebas suficientes. El ingeniero de versiones tiene la misma autoridad sobre la rama FreeBSD-
STABLE como se describe en la regla # 5.

Este es otro problema de tipo "no discutas sobre eso", ya que es el ingeniero de versiones el
responsable en última instancia (y recibe una paliza) si un cambio resulta ser malo. Respeta
esto y brinda al ingeniero de versiones tu total cooperación cuando se trata de la rama FreeBSD-
STABLE. El manejo de FreeBSD-STABLE puede parecer con frecuencia demasiado conservador
para el observador casual, pero también ten en cuenta el hecho de que se supone que el
conservadurismo es el sello distintivo de FreeBSD-STABLE y que se aplican reglas diferentes a
las de FreeBSD-CURRENT. Tampoco tiene sentido que FreeBSD-CURRENT sea un campo de
pruebas si los cambios se fusionan con FreeBSD-STABLE inmediatamente. Los cambios
necesitan la oportunidad de ser probados por los desarrolladores de FreeBSD-CURRENT, así que
deja pasar un tiempo antes de fusionarlos, a menos que la corrección de FreeBSD-STABLE sea
crítica, urgente o tan obvia como para hacer innecesarias más pruebas (corrección de errores /
errores tipográficos, etc.) En otras palabras, aplica el sentido común.

Los cambios a las ramas de seguridad (por ejemplo, releng/9.3) deben ser aprobados por un
miembro de Grupo Responsables de Seguridad <security-officer@FreeBSD.org>, o en algunos
casos, por un miembro de Grupo de Ingeniería de Releases <re@FreeBSD.org>.

7. No luches en público con otros committers; se ve mal.

65

https://docs.freebsd.org/en/books/developers-handbook/#policies
mailto:security-officer@FreeBSD.org
mailto:re@FreeBSD.org

Este proyecto tiene una imagen pública que defender y esa imagen es muy importante para
todos nosotros, especialmente si queremos seguir atrayendo nuevos miembros. Habrá ocasiones
en las que, a pesar de los mejores intentos de autocontrol de todos, se pierden los ánimos y se
intercambian palabras de enojo. Lo mejor que se puede hacer en tales casos es minimizar los
efectos de esto hasta que todos se hayan calmado de nuevo. No transmitas palabras de enojo en
público y no reenvíes correspondencia privada u otras comunicaciones privadas a listas de
correo públicas, alias de correo, canales de mensajería instantánea o sitios de redes sociales. Lo
que la gente dice cara a cara a menudo está menos suavizado que lo que dirían en público y, por
lo tanto, tales comunicaciones no tienen cabida allí; solo sirven para inflamar una situación que
ya es mala. Si la persona que envía un mensaje incendiario al menos tuvo el detalle de enviarlo
en privado, entonces ten el detalle de mantenerlo en privado. Si sientes que otro desarrollador
te está tratando injustamente y te está causando angustia, plantea el asunto a Core en lugar de
hacerlo público. Core hará todo lo posible para pacificar y hacer que las cosas vuelvan a la
cordura. En los casos en que la disputa implique un cambio en la base de código y los
participantes no parezcan estar llegando a un acuerdo amistoso, Core puede designar a un
tercero de mutuo acuerdo para resolver la disputa. Todas las partes involucradas deben aceptar
quedar vinculadas por la decisión tomada por este tercero.

8. Respeta todas las congelaciones de código y lee las listas de correo de committers y developers
regularmente de forma que sepas cuando una congelación está en curso.

Realizar cambios no aprobados durante una congelación de código es un gran error y se espera
que los committers se mantengan actualizados sobre lo que está sucediendo antes de saltar
después de una larga ausencia y hacer commit de 10 megabytes de material acumulado. A las
personas que abusen de esto de forma regular se les suspenderán sus privilegios de commit
hasta que regresen del Happy Reeducation Camp de FreeBSD que llevamos a cabo en
Groenlandia.

9. En caso de duda sobre cualquier procedimiento, ¡pregunta primero!

Cuando se tiene prisa se cometen muchos errores y simplemente asume que sabe la forma
correcta de hacer algo. Si no lo has hecho antes, es muy probable que no sepas realmente la
forma en que hacemos las cosas y realmente necesites preguntar primero o te avergonzarás por
completo en público. No hay vergüenza en preguntar "¿Cómo diablos hago esto?" Ya sabemos
que eres una persona inteligente; de lo contrario, no serías un committer.

10. Prueba tus cambios antes de realizarlos.

Si tus cambios son en el kernel, asegúrate de que aún puedes compilar tanto GENERIC como
LINT. Si tus cambios están en cualquier otro lugar, asegúrate de que aún puedes compilar el
resto del sistema (make world). Si tus cambios son en una rama, asegúrate de que la prueba se
realice con una máquina que ejecute ese código. Si tienes un cambio que también puede romper
otra arquitectura, asegúrate de probar en todas las arquitecturas compatibles. Por favor
asegúrate de que tu cambio funciona para supported toolchains. Por favor dirígete a FreeBSD
Internal Page para obtener una lista de los recursos disponibles. A medida que se agregan otras
arquitecturas a la lista de plataformas compatibles con FreeBSD, los recursos de prueba
compartidos apropiados estarán disponibles.

11. No hagas commit en software contribuido sin aprobación explícita de los respectivos

66

https://www.FreeBSD.org/internal/
https://www.FreeBSD.org/internal/

mantenedores.

Código contribuido es cualquier cosa bajo los árboles src/contrib, src/crypto, o src/sys/contrib.

Los árboles mencionados anteriormente son para software contribuido generalmente
importado a una rama de un proveedor. Hacer commit allí puede causar dolores de cabeza
innecesarios al importar versiones más nuevas del software. En general, considera enviar
parches directamente al proveedor. Los parches se pueden enviar a FreeBSD primero con el
permiso del desarrollador.

Las razones para modificar el software en el proyecto original van desde querer un control
estricto sobre una dependencia estrechamente acoplada hasta la falta de portabilidad en la
distribución del código del repositorio canónico. Independientemente de la razón, el esfuerzo
por minimizar la carga de mantenimiento de nuestra copia es útil para los compañeros
mantenedores. Evita realizar cambios triviales o estéticos en los archivos, ya que hace que cada
merge a partir de entonces sea más difícil: dichos parches deben volver a verificarse
manualmente en cada importación.

Si un trozo particular de software no tienen mantenedor, se te anima a que tomes propiedad del
mismo. Si no estás seguro del estado actual del mantenimiento del código envía un correo a
Lista sobre arquitectura y diseño de FreeBSD y pregunta.

20.2. Política sobre arquitecturas múltiples
FreeBSD ha añadido varias arquitecturas nuevas durante los últimos ciclos de lanzamiento y ya no
es en realidad un sistema operativo centrado en i386™. En un esfuerzo por hace más fácil el poder
mantener FreeBSD portable en las distintas plataformas que soportamos, Core ha desarrollado esta
exigencia:

Nuestra plataforma de referencia de 32 bits es i386 y nuestra plataforma de referencia de 64 bits es
amd64. El trabajo de diseño importante (incluidos los cambios importantes de API y ABI) debe
demostrar su valía en al menos una plataforma de 32 bits y al menos una de 64 bits,
preferiblemente las plataformas de referencia primarias, antes de que se pueda hacer commit en el
árbol de fuentes.

Los desarrolladores también deben conocer nuestra Política de Niveles para el soporte a largo plazo
de arquitecturas de hardware. Las reglas aquí están destinadas a proporcionar una guía durante el
proceso de desarrollo y son distintas de los requisitos para las características y arquitecturas
enumeradas en esa sección. Las reglas de nivel para el soporte de características en arquitecturas
en el momento del lanzamiento son más estrictas que las reglas de cambios durante el proceso de
desarrollo.

20.3. Política sobre Múltiples Compiladores
FreeBSD compila tanto con Clang como con GCC. El proyecto hace esto de forma cuidadosa y
controlada para maximizar los beneficios de este trabajo extra, a la vez que mantiene el trabajo
extra en mínimos. Suportar tanto Clang como GCC mejora la flexibilidad que tienen nuestros
usuarios. Estos compiladores tienen distintas fortalezas y debilidades, y soportar ambos permite a

67

https://lists.FreeBSD.org/subscription/freebsd-arch

los usuarios escoger el que mejor se adapta a sus necesidades. Clang y GCC soportan dialectos
similares de C y C++, necesitándose una cantidad relativamente pequeña de código condicional. El
proyecto gana más cobertura de código y mejora la calidad del código usando características de
ambos compiladores. El proyecto es capaz de compilar en más entornos de usuario y aprovechar
más entornos de CI al soportar este rango, incrementando las ventajas para los usuarios y dándoles
más herramientas con las que probar. Mediante la restricción cuidadosa de las versiones modernas
soportadas en estos compiladores, el proyecto evita incrementar la matriz de pruebas sin
necesidad. Los compiladores más viejos y oscuros, así como dialectos más antiguos de los lenguajes,
tienen un soporte extremadamente limitado que permite a los programas de usuarios compilar con
ellos, pero sin limitar a que el sistema base se compile con ellos. El equilibro exacto está en
constante evolución para asegurar que los beneficios del trabajo extra son mayores que la carga
que imponen. El proyecto solía soportar compiladores de Intel realmente antiguos o versiones
antiguas de GCC, pero cambiamos soportar esos compiladores obsoletos por una selección
cuidadosas de compiladores modernos. Esta sección documenta dónde usamos los diferentes
compiladores, y las expectativas al respecto.

El proyecto FreeBSD incorpora el compilador Clang. Debido a que está en el árbol, este es el
compilador mejor soportado. Todos los cambios tienen que compilar con él, antes de hacer el
commit. Las comprobaciones completas, como sean apropiadas para el cambio, se deberían hacer
con este compilador.

En cualquier momento, el proyecto FreeBSD también soporta uno o más compiladores fuera del
árbol. En este momento, esto es GCC 12.x. Idealemente, los committers deberían compilar con este
compilador, especialmente para cambios grandes o arriesgados. El compilador está disponible
como el paquete ${TARGET_ARCH}-gcc${VERSION} como aarch64-gcc12 o riscv64-gcc12. El proyecto
ejecuta trabajos automáticos de CI para compilar todo con estos compiladores. Se espera que los
committers arreglen los trabajos que se rompan con sus cambios. Los committers pueden probar la
compilación con, por ejemplo CROSS_TOOLCHAIN=aarch64-gcc12 o CROSS_TOOLCHAIN=llvm15 cuando sea
necesario.

El proyecto FreeBSD también tiene algunos pipelines de CI en github. Para las pull requests en
github y algunas ramas empujadas a los forks de github, se ejecutan algunos trabajos de
compilación cruzada. Estos comprueba la compilación de FreeBSD usando una versión de Clang
que a veces durante un tiempo está una versión por delante de la versión incluida en el árbol.

El proyecto FreeBSD también actualiza los compiladores. Tanto Clang como GCC se cambian
constantemente. Algunos cambios en el árbol, por ejemplo eliminando las declaraciones y
definiciones de funciones en estilo antiguo K&R, se introducirán en el árbol antes de cambiar el
compilador. Los committers deberían tratar de ser conscientes de esto y ser receptivos a la hora de
analizar problemas con su código o cambios con estos nuevos compiladores. Además, justo después
de que se ha introducido una nueva versión del compilador en el árbol, la gente necesita compilar
con la versión antigua si se sospecha que ha habido una regresión no detectada.

Además del compilador, el compilador usa directamente LDD de LLVM y las binutils de GNU. Los
committers deberían ser conscientes de las diferencias en la sintaxis de ensamblador y las
características de los enlazadores y asegurarse de que ambas variantes funcionan. Estos
componentes se comprobarán como parte de los trabajos de CI de FreeBSD para Clang o GCC.

El proyecto FreeBSD proporciona cabeceras y librerías que permiten que se puedan usar otros

68

https://cgit.freebsd.org/ports/tree/devel/freebsd-gcc12/
https://cgit.freebsd.org/ports/tree/devel/freebsd-gcc12/

compiladores que no estén en el sistema base. Estas cabeceras tienen soporte para hacer que el
entorno sea tan estricto como el estándar, soportando dialectos anteriores a ANSI-C hasta C89, y
otros casos esquina que la colección de ports ha dejado al descubierto Este soporte limita la
retirada de estándares antiguos en sitios como ficheros de cabecera, pero no limitan la
actualización del sistema base a nuevos dialectos. Tampoco requiere que el sistema base compile
con estos estándares antiguos. Romper el soporte causaría fallos en los paquetes de la colección de
ports, de forma que se debería evitar en la medida de lo posible, y arreglarlo rápidamente cuando
sea fácil hacerlo.

El sistema de compilación de FreeBSD actualmente soporta estos entornos diferentes. Conforme se
añaden nuevos avisos a los compiladores, el proyecto intenta arreglarlos. Sin embargo, a veces
estos avisos requieren un trabajo extensivo, de forma que se silencian de alguna forma usando
variables que evalúen a lo que sea apropiado dependiendo de la versión del compilador. Los
desarrolladores deberían ser conscientes de esto, y asegurar que cualquier flag específico de un
compilador debería ser usado condicionalmente.

20.3.1. Versiones Actuales de los Compiladores

El compilador en el sistema base es actualmente Clang 15.x. Actualmente, se prueban GCC 12 y
Clang 12, 13, 14 y 15 en los trabajos de CI de jenkins en github. Se está trabajando para preparar el
árbol para Clang 16. La rama soportada más antigua del proyecto tiene Clang 12, así que las
porciones del build que hacen el arranque deben funcionar con Clang desde la versión 12 hasta la
15.

20.4. Otras sugerencias
Al realizar cambios en la documentación, utiliza un corrector ortográfico antes de realizar el
commit. Para todos los documentos XML, verifica que las directivas de formato sean correctas
ejecutando make lint y textproc/igor.

Para páginas de manual, ejecuta sysutils/manck y textproc/igor sobre las páginas de manual para
verificar que todas las referencias cruzadas y las referencias de ficheros son correctas y que la
página del manual tiene instalados todos los MLINKS apropiados.

No mezcles arreglos de estilo con nuevas funciones. Una corrección de estilo es cualquier cambio
que no modifica la funcionalidad del código. La combinación de los cambios confunde el cambio de
funcionalidad al solicitar diferencias entre las revisiones, lo que puede ocultar cualquier error
nuevo. No incluyas cambios de espacios en blanco con cambios de contenido en los commits de
doc/. El desorden adicional en las diferencias hace que el trabajo de los traductores sea mucho más
difícil. En su lugar, realiza cambios de estilo o espacios en blanco en commits separados que estén
claramente etiquetados como tales en el mensaje de commit.

20.5. Funciones obsoletas
Cuando sea necesario eliminar la funcionalidad del software en el sistema base, sigue estas pautas
siempre que sea posible:

1. En la página del manual y posiblemente en las notas de la versión se menciona que la opción,

69

https://cgit.freebsd.org/ports/tree/textproc/igor/
https://cgit.freebsd.org/ports/tree/sysutils/manck/
https://cgit.freebsd.org/ports/tree/textproc/igor/

utilidad o interfaz está obsoleta. El uso de la función obsoleta genera una advertencia.

2. La opción, utilidad o interfaz se conserva hasta la próxima versión principal (punto cero).

3. La opción, utilidad o interfaz se elimina y ya no se documenta. Ahora está obsoleto. También es
generalmente una buena idea anotar su eliminación en las notas de la versión.

20.6. Privacidad y confidencialidad
1. La mayoría de los negocios de FreeBSD se realizan en público.

FreeBSD es un proyecto abierto. Lo cual significa no solo que cualquiera puede usar el código
fuente, sino que la mayoría del proceso de desarrollo está abierto para el escrutinio público.

2. Ciertos asuntos delicados deben permanecer privados o mantenidos bajo embargo.

Lamentablemente, no puede haber una transparencia total. Como desarrollador de FreeBSD,
tendrás un cierto grado de acceso privilegiado a la información. En consecuencia, se espera que
respetes ciertos requisitos de confidencialidad. A veces la necesidad de confidencialidad
proviene de colaboradores externos o tiene un límite de tiempo específico. Sin embargo, sobre
todo, se trata de no liberar comunicaciones privadas.

3. El oficial de seguridad tiene el control exclusivo sobre la publicación de avisos de seguridad.

Mientras que hay problemas de seguridad que afectan a muchos sistemas operativos diferentes,
FreeBSD frecuentemente depende del acceso temprano para poder preparar avisos para el
lanzamiento coordinado. A menos que se pueda confiar en que los desarrolladores de FreeBSD
mantendrán la seguridad, dicho acceso temprano no estará disponible. El oficial de seguridad es
responsable de controlar el acceso previo al lanzamiento a la información sobre
vulnerabilidades y de programar el lanzamiento de todos los avisos. Puedes solicitar ayuda bajo
condición de confidencialidad de cualquier desarrollador con conocimientos relevantes para
preparar soluciones de seguridad.

4. Las comunicaciones con Core se mantienen confidenciales durante el tiempo que sea necesario.

Las comunicaciones con Core inicialmente se tratarán de forma confidencial. Sin embargo, con
el tiempo, la mayor parte del negocio de Core se resumirá en informes básicos mensuales o
trimestrales. Se tendrá cuidado de no hacer públicos los detalles sensibles. Es posible que los
registros de algunos temas particularmente sensibles no se informen en absoluto y se
conservarán solo en los archivos privados de Core.

5. Es posible que se requieran acuerdos de no divulgación para acceder a ciertos datos
comercialmente sensibles.

El acceso a ciertos datos comercialmente sensibles solo puede estar disponible bajo un Acuerdo
de Confidencialidad. Se debe consultar al personal legal de la Fundación FreeBSD antes de
firmar cualquier acuerdo vinculante.

6. Las comunicaciones privadas no deben hacerse públicas sin permiso.

Más allá de los requisitos específicos anteriores, existe una expectativa general de no publicar

70

comunicaciones privadas entre desarrolladores sin el consentimiento de todas las partes
involucradas. Pide permiso antes de reenviar un mensaje a una lista de correo pública o
publicarlo en un foro o sitio web al que puedan acceder otras personas que no sean los
corresponsales originales.

7. Las comunicaciones en canales de acceso restringido o solo para proyectos deben mantenerse
privadas.

De manera similar a las comunicaciones personales, ciertos canales de comunicación internos,
incluidas las listas de correo de FreeBSD Committer y los canales de IRC de acceso restringido,
se consideran comunicaciones privadas. Se requiere permiso para publicar material de estas
fuentes.

8. Core puede aprobar la publicación.

Cuando no sea práctico obtener permiso debido a la cantidad de corresponsales o cuando el
permiso para publicar se niegue sin razón, Core puede aprobar la divulgación de tales asuntos
privados que merecen una publicación más general.

21. Soporte para múltiples arquitecturas
FreeBSD es un sistema operativo altamente portable destinado a funcionar en muchos tipos
diferentes de arquitecturas de hardware. Mantener una separación limpia del código dependiente
de la máquina (MD) y el código independiente de la máquina (MI), así como minimizar el código
MD, es una parte importante de nuestra estrategia para permanecer ágiles con respecto a las
tendencias actuales de hardware. Cada nueva arquitectura de hardware soportada por FreeBSD
aumenta sustancialmente el coste del mantenimiento del código, el soporte de la cadena de
herramientas y la ingeniería de versiones. También aumenta drásticamente el coste de las pruebas
efectivas de los cambios del kernel. Como tal, existe una fuerte motivación para diferenciar entre
clases de soporte para varias arquitecturas mientras se mantiene fuerte en algunas arquitecturas
clave que se ven como FreeBSD "Público objetivo".

21.1. Declaración de intención general
El proyecto FreeBSD tiene como objetivo "estaciones de trabajo comerciales listas para usar (COTS)
de calidad de producción, servidores y sistemas integrados de alta gama". Al mantener un enfoque
en un conjunto estrecho de arquitecturas de interés en estos entornos, el Proyecto FreeBSD puede
mantener altos niveles de calidad, estabilidad y rendimiento, así como minimizar la carga en varios
equipos de soporte en el proyecto, como el equipo de ports, equipo de documentación, oficial de
seguridad y equipos de ingenieros de versiones. La diversidad en el soporte de hardware amplía las
opciones para los consumidores de FreeBSD al ofrecer nuevas características y oportunidades de
uso, pero estos beneficios siempre deben considerarse cuidadosamente en términos del coste de
mantenimiento del mundo real asociado con el soporte de plataforma adicional.

El Proyecto FreeBSD diferencia los objetivos de la plataforma en cuatro niveles. Cada nivel incluye
una lista de garantías en las que los consumidores pueden confiar, así como las obligaciones del
Proyecto y los desarrolladores para cumplir con esas garantías. Estas listas definen las garantías
mínimas para cada nivel. El Proyecto y los desarrolladores pueden proporcionar niveles

71

adicionales de soporte más allá de las garantías mínimas para un nivel determinado, pero dicho
soporte adicional no está garantizado. Cada objetivo de plataforma se asigna a un nivel específico
para cada rama estable. Como resultado, a una plataforma de destino podría asignarsele diferentes
niveles en ramas estables concurrentes.

21.2. Objetivos de plataforma
El soporte para una plataforma de hardware consta de dos componentes: el soporte del kernel y las
interfaces binarias de aplicaciones (ABI) del área de usuario. El soporte de la plataforma del kernel
incluye las cosas necesarias para ejecutar un kernel FreeBSD en una plataforma de hardware, como
la administración de memoria virtual dependiente de la máquina y los controladores de
dispositivo. Una ABI de área de usuario especifica una interfaz para que los procesos de usuario
interactúen con un núcleo de FreeBSD y bibliotecas del sistema base. Una ABI de área de usuario
incluye interfaces de llamada al sistema, el diseño y la semántica de las estructuras de datos
públicas y el diseño y la semántica de los argumentos que se pasan a las subrutinas. Algunos
componentes de una ABI pueden definirse mediante especificaciones como el diseño de objetos de
excepción de C ++ o convenciones de llamada para funciones de C.

Un kernel de FreeBSD también usa una ABI (a veces denominada interfaz binaria del kernel (KBI))
que incluye la semántica y los diseños de las estructuras de datos públicas y el diseño y la
semántica de los argumentos de las funciones públicas dentro del propio kernel.

Un kernel de FreeBSD puede admitir múltiples ABI de usuario. Por ejemplo, el kernel amd64 de
FreeBSD es compatible con las ABI de área de usuario amd64 e i386 de FreeBSD, así como con las
ABI de área de usuario de Linux x86_64 e i386. Un kernel de FreeBSD debería admitir un ABI
"nativo" como ABI predeterminado. El "ABI" nativo generalmente comparte ciertas propiedades con
la ABI del kernel, como la convención de llamadas de C, tamaños de tipos básicos, etc.

Los niveles se definen tanto para los núcleos como para las ABI del área de usuario. En el caso
común, el kernel de una plataforma y las ABI de FreeBSD se asignan al mismo nivel.

21.3. Nivel 1: Arquitecturas totalmente compatibles
Las plataformas de nivel 1 son las plataformas FreeBSD más maduras. Están respaldados por el
oficial de seguridad, la ingeniería de versiones y el Equipo de Gestión de Ports. Se espera que las
arquitecturas de nivel 1 sean de calidad de producción con respecto a todos los aspectos del sistema
operativo FreeBSD, incluidos los entornos de instalación y desarrollo.

El Proyecto FreeBSD ofrece las siguientes garantías a los consumidores de plataformas Tier 1:

• Las imágenes oficiales de lanzamiento de FreeBSD serán proporcionadas por el equipo de
ingenieros de lanzamiento.

• Se proporcionarán actualizaciones binarias y parches de origen para avisos de seguridad y
avisos de erratas para las versiones compatibles.

• Se proporcionarán parches de origen para avisos de seguridad para las sucursales admitidas.

• Las actualizaciones binarias y los parches de origen para los avisos de seguridad
multiplataforma se proporcionarán normalmente en el momento del anuncio.

72

• Los cambios en las ABI del área de usuario generalmente incluirán ajustes de compatibilidad
para garantizar el funcionamiento correcto de los binarios compilados en cualquier rama
estable donde la plataforma sea de nivel 1. Es posible que estos ajustes no estén habilitados en
la instalación predeterminada. Si no se proporcionan calzas de compatibilidad para un cambio
de ABI, la falta de calzas se documentará claramente en las notas de la versión.

• Los cambios en ciertas partes de la ABI del kernel incluirán ajustes de compatibilidad para
garantizar el funcionamiento correcto de los módulos del kernel compilados con la versión
compatible más antigua de la rama. Tenga en cuenta que no todas las partes de la ABI del kernel
están protegidas.

• El equipo de ports proporcionará paquetes binarios oficiales para software de terceros. Para las
arquitecturas integradas, estos paquetes pueden construirse de forma cruzada a partir de una
arquitectura diferente.

• Los ports más relevantes deberían construir o tener los filtros apropiados para evitar que se
construyan otros inapropiados.

• Las nuevas características que no son inherentemente específicas de la plataforma serán
completamente funcionales en todas las arquitecturas de Nivel 1.

• Las características y las correcciones de compatibilidad utilizadas por los binarios compilados
contra ramas estables más antiguas pueden eliminarse en versiones principales más recientes.
Dichas eliminaciones se documentarán claramente en las notas de la versión.

• Las plataformas de nivel 1 deben estar completamente documentadas. Las operaciones básicas
se documentarán en el manual de FreeBSD.

• Las plataformas de nivel 1 se incluirán en el árbol de fuentes.

• Las plataformas de nivel 1 deben ser auto contenidas, ya sea a través de la cadena de
herramientas en árbol o una cadena de herramientas externa. Si se requiere una cadena de
herramientas externa, se proporcionarán paquetes binarios oficiales para una cadena de
herramientas externa.

Para mantener la madurez de las plataformas de Nivel 1, el Proyecto FreeBSD mantendrá los
siguientes recursos para apoyar el desarrollo:

• Crea y prueba el soporte de automatización, ya sea en el clúster de FreeBSD.org o en alguna otra
ubicación fácilmente disponible para todos los desarrolladores. Las plataformas integradas
pueden sustituir un emulador disponible en el clúster de FreeBSD.org por hardware real.

• Inclusión en los objetivos make universe y make tinderbox.

• Hardware dedicado en uno de los clústeres de FreeBSD para la construcción de paquetes (ya sea
de forma nativa o mediante qemu-user).

En conjunto, los desarrolladores deben proporcionar lo siguiente para mantener el estado de Nivel
1 de una plataforma:

• Los cambios en el árbol de fuentes no deben romper conscientemente la construcción de una
plataforma de Nivel 1.

• Las arquitecturas de nivel 1 deben tener un ecosistema maduro y saludable de usuarios y
desarrolladores activos.

73

• Los desarrolladores deberían poder crear paquetes en sistemas de Nivel 1 no integrados y
comúnmente disponibles. Esto puede significar compilaciones nativas si los sistemas no
integrados están comúnmente disponibles para la plataforma en cuestión, o puede significar
compilaciones cruzadas alojadas en alguna otra arquitectura de Nivel 1.

• Los cambios no pueden romper la ABI del área de usuario. Si se requiere un cambio de ABI, la
compatibilidad de ABI para binarios existentes debe proporcionarse mediante el uso de
versiones de símbolos o cambios de versión de biblioteca compartida.

• Los cambios combinados en ramas estables no pueden romper las partes protegidas de la ABI
del kernel. Si se requiere un cambio de ABI del kernel, el cambio debe modificarse para
preservar la funcionalidad de los módulos del kernel existentes.

21.4. Nivel 2: Arquitecturas de desarrollo y de nicho
Las plataformas de nivel 2 son plataformas FreeBSD funcionales, pero menos maduras. No cuentan
con el apoyo del oficial de seguridad, la ingeniería de versiones y los equipos de administración de
ports.

Las plataformas de nivel 2 pueden ser candidatas a plataformas de nivel 1 que aún se encuentran
en desarrollo activo. Las arquitecturas que llegan al final de su vida útil también pueden pasar del
estado de Nivel 1 al estado de Nivel 2 a medida que disminuye la disponibilidad de recursos para
continuar manteniendo el sistema en un estado de Calidad de Producción. Las arquitecturas
especializadas bien soportadas también pueden ser de Nivel 2.

El Proyecto FreeBSD proporciona las siguientes garantías a los consumidores de plataformas Tier 2:

• La infraestructura de ports debe incluir soporte básico para arquitecturas de Nivel 2 suficiente
para soportar la construcción de ports y paquetes. Esto incluye soporte para paquetes básicos
como ports-mgmt / pkg, pero no hay garantía de que los ports arbitrarios sean compilables o
funcionales.

• Las nuevas características que no son inherentemente específicas de la plataforma deberían ser
factibles en todas las arquitecturas de Nivel 2 si no se implementan.

• Las plataformas de nivel 2 se incluirán en el árbol de fuentes.

• Las plataformas de nivel 2 deben auto alojarse a través de la cadena de herramientas en árbol o
una cadena de herramientas externa. Si se requiere una cadena de herramientas externa, se
proporcionarán paquetes binarios oficiales para una cadena de herramientas externa.

• Las plataformas de nivel 2 deben proporcionar kernels funcionales y áreas de usuario incluso si
no se proporciona una distribución de lanzamiento oficial.

Para mantener la madurez de las plataformas Tier 2, el Proyecto FreeBSD mantendrá los siguientes
recursos para apoyar el desarrollo:

• Inclusión en los objetivos make universe y make tinderbox.

En conjunto, los desarrolladores deben proporcionar lo siguiente para mantener el estado de Nivel
2 de una plataforma:

• Los cambios en el árbol de fuentes no deberían romper a sabiendas la construcción de una

74

plataforma de Nivel 2.

• Las arquitecturas de nivel 2 deben tener un ecosistema activo de usuarios y desarrolladores.

• Si bien se permite que los cambios rompan la ABI del área de usuario, la ABI no debe romperse
gratuitamente. Los cambios significativos en la ABI del área de usuario deben restringirse a las
versiones principales.

• Las nuevas funciones que aún no se han implementado en las arquitecturas de nivel 2 deberían
proporcionar un medio para desactivarlas en esas arquitecturas.

21.5. Nivel 3: Arquitecturas experimentales
Las plataformas de nivel 2 son plataformas FreeBSD funcionales, pero menos maduras. No cuentan
con el apoyo del oficial de seguridad, la ingeniería de versiones y el Equipo de Gestión de Ports.

Las plataformas de nivel 3 son arquitecturas en las primeras etapas de desarrollo, para plataformas
de hardware no convencionales, o que se consideran sistemas heredados con pocas probabilidades
de tener un uso amplio en el futuro. El soporte inicial para las plataformas de Nivel 3 puede existir
en un repositorio separado en lugar del repositorio de origen principal.

El Proyecto FreeBSD no ofrece garantías a los consumidores de plataformas de Nivel 3 y no se
compromete a mantener los recursos para apoyar el desarrollo. Es posible que las plataformas de
nivel 3 no siempre sean compilables, ni ningún núcleo o ABI de área de usuario se considera
estable.

21.6. Arquitecturas No Soportadas
Otras plataformas no están soportadas en absoluto por el proyecto. El proyecto antes las describía
como sistemas de Nivel 4.

Después de que una plataforma pase a ser no soportada, se elimina de los árboles de fuentes, ports
y documentación todo su soporte. Nótese que el soporte en ports debe permanecer mientras la
plataforma esté soportada en una rama todavía soportada por los ports.

21.7. Política sobre el cambio de nivel de una
arquitectura
Los sistemas solo se pueden mover de un nivel a otro con la aprobación del Core Team de FreeBSD,
que tomará esa decisión en colaboración con el Oficial de Seguridad, la Ingeniería de Versiones y el
Equipo de Gestión de Ports. Para que una plataforma sea promovida a un nivel superior, las
garantías de soporte que falten deben cumplirse antes de que se complete la promoción.

22. Preguntas frecuentes sobre ports
específicos

75

22.1. Agregar un port nuevo

22.1.1. ¿Cómo agrego un nuevo port?

Añadir un port al árbol es algo relativamente sencillo. Una vez que el port está listo para ser
añadido, como se explica en aquí, necesitas añadir la entrada al directorio de port en el Makefile de
la categoría correspondiente. En este Makefile, los ports están listados en orden alfabético y
añadidos a la variable SUBDIR, de este modo:

 SUBDIR += newport

Una vez que el port y el Makefile de su categoría están listos, se puede hacer commit del nuevo
port:

% git add category/Makefile category/newport
% git commit
% git push


No te olvides de establecer los hooks de git para el árbol de ports como se explica
aquí; se ha desarrollado un hook específico para verificar la categoría del
Makefile.

22.1.2. ¿Alguna otra cosa que deba saber cuando agregue un nuevo port?

Verifica el port, preferiblemente para asegurarse de que se compila y empaqueta correctamente.

The Porters Handbook’s Testing Chapter contains more detailed instructions. See the Portclippy /
Portfmt and the poudriere sections.

No necesitas eliminar todos los avisos pero asegúrate de haber corregido los más simples.

Si el port viene de alguien que no ha contribuido anteriormente al Proyecto, añade el nombre de
esa persona a la sección Additional Contributors de la Lista de Colaboradores de FreeBSD.

Si el port vino a través de un PR, ciérralo. Para cerrar un PR, cambia el estado a Issue Resolved y la
resolución a Fixed.



If for some reason using poudriere to test the new port is not possible, the bare
minimum of testing includes this sequence:

make install
make package
make deinstall
pkg add package you built above
make deinstall
make reinstall

76

https://docs.freebsd.org/en/books/porters-handbook/testing
https://docs.freebsd.org/en/books/porters-handbook/testing#testing-portclippy
https://docs.freebsd.org/en/books/porters-handbook/testing#testing-portclippy
https://docs.freebsd.org/en/books/porters-handbook/testing#testing-poudriere
https://docs.freebsd.org/en/articles/contributors/#contrib-additional
https://docs.freebsd.org/en/books/porters-handbook/testing#testing-poudriere

make package

Date cuenta de que poudriere es la referencia para la construcción de paquetes, si
el paquete no compila en poudriere, será eliminado.

22.2. Eliminar un port existente

22.2.1. ¿Cómo elimino un port existente?

Primero, lea la sección sobre copias del repositorio. Antes de eliminar el port, debe verificar que no
haya otros ports que dependan de él.

• Asegúrese de que no haya dependencia del port en la colección de ports:

◦ El PKGNAME del port aparece exactamente en una línea en un archivo INDEX reciente.

◦ Ningún otro port contiene ninguna referencia al directorio del port o PKGNAME en sus
Makefiles


Cuando uses Git, considera utilizar git-grep(1), es mucho más rápido que
grep -r.

• Luego, quita el port:

◦ Elimina los ficheros del port y el directorio con git rm.

◦ Elimina la entrada SUBDIR del port en el Makefile del directorio padre.

◦ Añade una entrada en ports/MOVED.

◦ Elimina el port de ports/LEGAL si estuviera ahí.

Como alternativa, puedes utilizar el script rmport, de ports/Tools/scripts. Este script fue escrito por
Vasil Dimov <vd@FreeBSD.org>. Cuando envíes preguntas acerca de este script a Lista de correo
sobre los ports de FreeBSD, por favor, pon en copia a Chris Rees <crees@FreeBSD.org>, el actual
mantenedor.

22.3. ¿Cómo muevo un port a un lugar nuevo?

1. Realiza una comprobación exhaustiva de la colección de ports buscando cualquier
dependencia de la localización/nombre antiguo del port y actualízalos. Ejecutar grep en
INDEX no es suficiente porque algunos ports tienen dependencias activadas a través de
opciones de tiempo de compilación. Se recomienda hacer un git-grep(1) completo sobre la
colección de ports.

2. Elimina la entrada SUBDIR del Makefile de la categoría antigua y añade una entrada SUBDIR
en el Makefile de la nueva categoría.

3. Añade una entrada en ports/MOVED.

77

https://man.freebsd.org/cgi/man.cgi?query=git-grep&sektion=1&format=html
mailto:vd@FreeBSD.org
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports
mailto:crees@FreeBSD.org
https://man.freebsd.org/cgi/man.cgi?query=git-grep&sektion=1&format=html

4. Busca entradas en los ficheros xml de ports/security/vuxml y ajústalos en consecuencia. En
particular, verifica los paquetes anteriores con el nuevo nombre cuya versión podría
incluir el nuevo port.

5. Mueve el port con git mv.

6. Haz commit de los cambios.

22.4. ¿Cómo copio un port a un lugar nuevo?

1. Copia el port con cp -R old-cat/old-port new-cat/new-port.

2. Añade el nuevo port a new-cat/Makefile.

3. Cambia lo que se necesite en new-cat/new-port.

4. Haz commit de los cambios.

22.5. Congelación de ports

22.5.1. ¿Qué es una "congelación de ports"?

Una "Congelación de ports" era un estado restringido en el que se colocaba el árbol de ports antes
de un lanzamiento de versión. Se utilizó para garantizar una mayor calidad de los paquetes
enviados con una versión. Solía durar un par de semanas. Durante ese tiempo, se solucionaban los
problemas de compilación y se compilaban los paquetes para dicha versión. Esta práctica ya no se
utiliza, ya que los paquetes para las versiones se crean a partir de la rama trimestral estable actual.

Para más información sobre cómo mergear commits en la rama trimestral, lee ¿Cuál es el
procedimiento para solicitar autorización para fusionar un compromiso con la sucursal trimestral?.

22.6. Sucursales trimestrales

22.6.1. ¿Cuál es el procedimiento para solicitar autorización para fusionar
un compromiso con la sucursal trimestral?

Desde el 30 de Noviembre de 2020 no es necesario buscar aprobación explícita para hacer commit
en la rama trimestral.

22.6.2. ¿Cuál es el procedimiento para mergear commits con la rama
trimestral?

Mergear commits a la rama trimestral (un proceso que llamamos MFH por razones históricas) es
muy similar a hacer un commit MFC en el repositorio de src, así que básicamente:

% git checkout 2021Q2
% git cherry-pick -x $HASH

78

(verify everything is OK, for example by doing a build test)
% git push

donde $HASH es el hash del commit que quieres copiar a la rama trimestral. El parámetro -x asegura
que se incluye el hash $HASH de la rama main en el nuevo mensaje de commit de la rama trimestral.

22.7. Crear una nueva categoría

22.7.1. ¿Cuál es el procedimiento para crear una nueva categoría?

Por favor, lee Proposing a New Category en el Porter’s Handbook. Una vez que se ha seguido el
procedimiento y que se ha asignado el PR a Grupo de Administración de ports
<portmgr@FreeBSD.org>, es su decisión si se aprueba o no. Si lo hacen, es su responsabilidad:

1. Realiza los movimientos necesarios. (Esto solo se aplica a las categorías físicas.)

2. Actualiza la definición de VALID_CATEGORIES en ports/Mk/bsd.port.mk.

3. Asígnate el PR de nuevo.

22.7.2. ¿Qué debo hacer para implementar una nueva categoría física?

1. Actualizar cada Makefile de los ports movidos. No conectes todavía la nueva categoría a la
compilación.

Para hacer esto, necesitarás:

1. Cambiar CATEGORIES del port (este era el objetivo del ejercicio, ¿recuerdas?)
Primero se lista la nueva categoría. Esto ayudará a que el PKGORIGIN sea correcto.

2. Ejecutar un make describe. Puesto que el make index de nivel raíz que ejecutarás en
unos pocos pasos es una iteración de un make describe realizado sobre toda la
jerarquía de ports, detectar cualquier error aquí te evitará tener que volver a
ejecutar ese paso más adelante.

3. Si quieres ser realmente concienzudo, ahora podría ser un buen momento para
ejecutar portlint(1).

2. Comprueba que los PKGORIGIN son correctos. El sistema de ports utiliza la entrada
CATEGORIES de cada port para crear su PKGORIGIN, el cual se usa para conectar los paquetes
instalados con el directorio de port a partir del cual fue construido. Si esta entrada es
incorrecta, herramientas habituales de los prots como pkg-version(8) y portupgrade(1)
fallarán.

Para hacer esto, utiliza la herramienta chkorigin.sh: env PORTSDIR=/path/to/ports sh -e
/path/to/ports/Tools/scripts/chkorigin.sh. Esto comprobará cada port en el árbol, incluso
aquellos que no estén conectados a la compilación, de forma que puedes ejecutarlo

79

https://docs.freebsd.org/en/books/porters-handbook/#proposing-categories
mailto:portmgr@FreeBSD.org
https://man.freebsd.org/cgi/man.cgi?query=portlint&sektion=1&format=html
https://man.freebsd.org/cgi/man.cgi?query=pkg-version&sektion=8&format=html
https://man.freebsd.org/cgi/man.cgi?query=portupgrade&sektion=1&format=html

directamente después de la operación de mover el port. Truco: ¡no te olvides de mirar los
PKGORIGIN de los ports esclavos en los ports que acabas de mover!

3. En tu propio sistema local, comprueba los cambios propuestos: primero, comenta las
entradas SUBDIR en los Makefiles de las categorías de los ports antiguos; luego activa la
construcción de la nueva categoría en ports/Makefile. Ejecuta make checksubdirs en los
directorios de las categorías afectadas para comprobar las entradas SUBDIR. Después en el
directorio ports/ ejecuta make index. Esto puede durar más de 40 minutos incluso en
sistemas modernos; sin embargo, es un paso necesario para evitar que otra gente tenga
problemas.

4. Una vez hecho esto, puedes hacer commit del ports/Makefile actualizado para conectar la
nueva categoría a la compilación y también hacer commit de los cambios en el Makefile
para la(s) categoría(s) nueva(s).

5. Añade las entradas apropiadas a ports/MOVED.

6. Actualiza la documentación modificando:

◦ el list of categories en el Porter’s Handbook

7. Solo una vez que se haya hecho todo lo anterior, y ya no se informe de problemas con los
nuevos ports, los ports antiguos deben eliminarse de sus ubicaciones anteriores en el
repositorio.

22.7.3. ¿Qué debo hacer para implementar una nueva categoría virtual?

Esto es mucho más simple que una categoría física. Solo se necesitan algunas modificaciones:

• el list of categories en el Porter’s Handbook

22.8. Preguntas misceláneas

22.8.1. ¿Hay cambios de los que se pueda hacer commit sin pedir la
aprobación del mantenedor?

La aprobación general para la mayoría de los ports se aplica a estos tipos de arreglos:

• La mayoría de los cambios de infraestructura sobre un port (es decir, modernizarlo, pero no
cambiar la funcionalidad). Por ejemplo, el "blanket" cubre convertir ports para que utilicen una
nueva macro USES, habilitar compilación con más información de log y cambiar a una nueva
sintaxis en el sistema de ports.

• Arreglos triviales y probados en compilación y tiempo de ejecución.

• Cambios de documentación y metadatos en los ports, como pkg-descr o COMMENT.



Cualquier cosa mencionada por Grupo de Administración de ports
<portmgr@FreeBSD.org> o el Grupo Responsables de Seguridad <security-
officer@FreeBSD.org> pueden ser excepciones a estas reglas. Nunca se pueden
hacer commits no autorizados en ports mantenidos por esos grupos.

80

https://docs.freebsd.org/en/books/porters-handbook/#PORTING-CATEGORIES
https://docs.freebsd.org/en/books/porters-handbook/#PORTING-CATEGORIES
mailto:portmgr@FreeBSD.org
mailto:security-officer@FreeBSD.org
mailto:security-officer@FreeBSD.org

22.8.2. ¿Cómo sé si mi port se está construyendo correctamente o no?

Los paquetes se construyen varias veces por semana. Si un port falla, el mantenedor recibe un
email de pkg-fallout@FreeBSD.org.

Informes de todos las construcciones de paquetes (oficiales, experimentales y de no-regresión) se
agregan en pkg-status.FreeBSD.org.

22.8.3. He añadido un nuevo port. ¿Necesito añadirlo al INDEX?

No. El fichero se puede generar bien ejecutando make index, o se puede descargar una versión pre-
generada con make fetchindex.

22.8.4. ¿Hay otros archivos que no pueda tocar?

Cualquier fichero bajo ports/, o cualquier fichero bajo un subdirectorio que empieza con una letra
mayúscula (Mk/, Tools/, etc.). En concreto, Grupo de Administración de ports
<portmgr@FreeBSD.org> es muy protector con ports/Mk/bsd.port*.mk así que no hagas commit de
cambios en esos ficheros a menos que quieras enfrentarte a su ira.

22.8.5. ¿Cuál es el procedimiento adecuado para actualizar la suma de
comprobación de un archivo distfile de un pport cuando el archivo cambia
sin un cambio de versión?

Cuando la suma de comprobación (checksum) de un archivo de distribución se actualiza debido a
que el autor actualizó el archivo sin cambiar la revisión del port, el mensaje de confirmación
incluye un resumen de las diferencias relevantes entre el archivo de distribución original y el
nuevo para garantizar que el archivo de distribución no haya sido dañado o alterado
maliciosamente. Si la versión actual del port ha estado en el árbol de ports durante un tiempo, una
copia del antiguo archivo de distribución estará disponible en los servidores ftp; de lo contrario, se
debe contactar con el autor o el encargado del mantenimiento para averiguar por qué ha cambiado
el archivo de distribución.

22.8.6. ¿Cómo se puede solicitar una construcción experimental (exp-run)
del árbol de ports?

Se debe completar una ejecución de exp-run antes de que se haga commit de parches con un
impacto significativo en los ports. El parche puede ser contra el árbol de ports o el sistema base.

Se hará una construcción completa con los parches proporcionados por el peticionario, y éste es
responsable de corregir los problemas detectados (fallout) antes de hacer commit.

1. Visita la página Bugzilla new PR page.

2. Selecciona el producto relacionado con tu parche.

3. Completa el informe de error como de costumbre. Recuerda adjuntar el parche.

4. Si arriba dice “Show Advanced Fields”, haz click en el enlace. Ahora dirá “Hide Advanced
Fields”. Habrá disponibles muchos más campos. Si ya dice “Hide Advanced Fields”, no se

81

pkg-status.FreeBSD.org
mailto:portmgr@FreeBSD.org
https://bugs.freebsd.org/submit

necesita hacer nada.

5. En la sección “Flags”, establece “exp-run” a ?. Respecto a los otros campos, pasando el ratón
por encima de cualquier campo hace que se muestren más detalles.

6. Envía. Espera a que se ejecute la compilación.

7. El Grupo de Administración de ports <portmgr@FreeBSD.org> contestará con los posibles
errores detectados.

8. Dependiendo del resultado:

◦ Si no hay errores, el procedimiento se detiene aquí y se puede hacer commit del
cambio, pendiente de cualquier otra aprobación requerida.

i. Si hay errores, deben ser corregidos, bien arreglando los ports directamente en el
árbol de ports, o añadiéndolo al parche enviado.

ii. Una vez hecho esto, vuelve al paso 6 y di que los errores se han solucionado y
espera a que se vuelva a ejecutar el exp-run. Repite mientras haya ports rotos.

23. Problemas Específicos para
Desarrolladores que No Son Committers
Algunas personas que tienen acceso a las máquinas FreeBSD no tienen commit bits. Casi todo este
documento también aplicará a estos desarrolladores (excepto los aspectos específicos de los
commits y las pertenencias a las listas de correo que las acompañan). En particular, te
recomendamos que leas:

• Detalles administrativos

• Para Todos


Pídele a tu mentor que te añada al "Additional Contributors"
(doc/shared/contrib-additional.adoc), si todavía no estás en la lista.

• Relaciones con los desarrolladores

• Guía de inicio rápido de SSH

• La gran lista de reglas de los Committers de FreeBSD

24. Información sobre Google Analytics
A partir del 12 de diciembre de 2012, se habilitó Google Analytics en el sitio web del Proyecto
FreeBSD para recopilar estadísticas de uso anónimas con respecto al uso del sitio.

 El 3 de Marzo de 2022, Google Analytics fue eliminado del Proyecto FreeBSD.

82

mailto:portmgr@FreeBSD.org

25. Preguntas misceláneas

25.1. ¿Cómo accedo a people.FreeBSD.org para incluir
algo de información personal o información acerca de
un proyecto?
people.FreeBSD.org es lo mismo que freefall.FreeBSD.org. Simplemente crea un directorio
public_html. Cualquier cosa que dejes en ese directorio será automáticamente visible bajo
https://people.FreeBSD.org/.

25.2. ¿Dónde se almacenan los archivos de la lista de
correo?
Las listas de correo se archivan en /local/mail en freefall.FreeBSD.org.

25.3. Me gustaría ser mentor de un nuevo committer.
¿Qué proceso debo seguir?
Lee el documento New Account Creation Procedure en las páginas internas.

26. Beneficios y Ventajas para los
committers de FreeBSD

26.1. Reconocimiento
El reconocimiento como ingeniero de software competente es el valor más duradero. Además, tener
la oportunidad de trabajar con algunas de las mejores personas con las que todo ingeniero soñaría
conocer ¡es una gran ventaja!

26.2. Centro comercial FreeBSD
Los committers de FreeBSD pueden obtener gratis en las conferencias un conjunto de 4-CDs o DVD
de FreeBSD Mall, Inc..

26.3. Gandi.net
Gandi proporciona hospedaje web, computación en la nube, registro de dominios y servicios de
certificados X.509.

Gandi oferta una tarifa E-rate de descuento a todos los desarrolladores de FreeBSD. Para facilitar el
proceso de obtener el descuento, primero crea una cuenta en Gandi, rellena la información de

83

https://people.FreeBSD.org/
https://www.freebsd.org/internal/new-account/
http://www.freebsdmall.com
https://gandi.net

facturación y selecciona la moneda. Después envía un email a non-profit@gandi.net usando tu
dirección @freebsd.org e indica tu identificador de Gandi.

26.4. rsync.net
rsync.net proporciona almacenamiento en la nube para backup que está optimizado para usuarios
UNIX. Su servicio funciona en su totalidad con FreeBSD y ZFS.

rsync.net oferta una cuenta de 500 GB gratis para siempre para los desarrolladores de FreeBSD.
Simplemente regístrate en https://www.rsync.net/freebsd.html usando tu dirección @freebsd.org
para recibir esta cuenta gratuita.

26.5. JetBrains
JetBrains es una compañía de desarrollo de software que crea herramientas para desarrolladores
de software y gestores de proyectos. La compañía ofrece varios entornos integrados de desarrollo
(IDEs) para distintos lenguajes de programación.

JetBrain oferta 100 licencias anuales de forma gratuita para todos sus IDE. Simplemente regístrate
en https://account.jetbrains.com/a/322tl3z7 usando tu dirección @freebsd.org y la cuenta tendrá una
licencia asociada a ella automáticamente. Una vez que la cuenta esté activa úsala en cualquiera de
los productos para activarlos y ya has terminado.


Por favor, utiliza estas licencias sólo para uso personal y no las compartas con
nadie fuera del proyecto FreeBSD, ya que eso sería una violación de los términos
de donación.

84

mailto:non-profit@gandi.net
https://rsync.net
https://www.rsync.net/freebsd.html
https://www.jetbrains.com
https://www.jetbrains.com/products
https://account.jetbrains.com/a/322tl3z7

	Guía para los Committers
	Tabla de contenidos
	1. Detalles administrativos
	2. Claves OpenPGP de FreeBSD
	3. Kerberos y contraseña web LDAP para el clúster de FreeBSD
	4. Tipos de Commit Bits
	5. Introducción a Git
	6. Histórico del Control de Versiones
	7. Configuración, Convenciones y Tradiciones
	8. Revisión previa al commit
	9. Mensajes de Commit
	10. Licencia preferida para los nuevos archivos
	11. Seguimiento de las licencias concedidas al proyecto FreeBSD
	12. Etiquetas SPDX en el árbol
	13. Relaciones con los desarrolladores
	14. Si tienes dudas …​
	15. Bugzilla
	16. Phabricator
	17. Quien es Quien
	18. Guía de inicio rápido de SSH
	19. Disponibilidad de Coverity® para los Committers de FreeBSD
	20. La gran lista de reglas de los Committers de FreeBSD
	21. Soporte para múltiples arquitecturas
	22. Preguntas frecuentes sobre ports específicos
	23. Problemas Específicos para Desarrolladores que No Son Committers
	24. Información sobre Google Analytics
	25. Preguntas misceláneas
	26. Beneficios y Ventajas para los committers de FreeBSD

